
Annexes 

In this set of Annexes, either some advanced topics are covered, or some topics are 
revisited from an alternative point of view, which allows for a better understanding 
of the topic. In Annex A, a precise mathematical derivation of the PPGP equations 
is presented. In addition, the relationship between the PPGP equations for a particle 
and its antiparticle, if both are moving in the same external world, is discussed. In 
Annex B, the Dirac equation is presented and discussed. Heuristic discussions related 
to materials presented in Chap. 8 are presented in Annexes C and I. An in-depth 
discussion of the antiparticle PPGP equations is presented in Annex D. The solution 
of the complementary PPGP equation for a particle confined in a one-dimensional 
infinite well is presented in Annex E. Annex F contains a general discussion about 
the mathematical apparatus of quantum mechanics. The superposition principle and 
its relationship with the PPGP equations is the topic discussed in Annex G. Finally, 
Annex H is directed to quantum mechanics instructors. The pedagogical values of 
the approach followed by the authors in this book are discussed. 

Annex A: Schrödinger-Like and Pauli-Like Relativistic 
Wave Equations 

In this Annex, a precise mathematical derivation of the PPGP equations is presented. 
In addition, the relationship between the PPGP equations for a particle and its 
antiparticle, if both are moving in the same external world, is discussed. 

Theorem I 

By solving the following Schrödinger-like equations (Chap. 3): 

iℏ
∂ 
∂t

Ψ = − ℏ
2 

2μ(r )
∇2Ψ + V (r )Ψ, with μ(r ) =

[
1 + 

E − V (r ) 
2mc2

]
m. (A.1) 
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And: 

iℏ
∂ 
∂t

Ω = − ℏ
2 

2μ'(r )
∇2Ω + V (r )Ω, with μ'(r ) =

[
−1 + 

E ' − V (r) 
2mc2

]
m. (A.2) 

We obtain the exact solutions, Ψ and E, and Ω and E', of the Klein-Gordon (KG) 
equation with total energy ET = E + mc2 and ET = E' − mc2, respectively. 

Demonstration: 

The KG equation for a spin-(s = 0) particle, with mass m, in the external central 
potential V (r) is:

[
iℏ

∂ 
∂t 

− V (r)
]2 

ψKG  = −ℏ
2 c2∇2 ψKG  + m2 c4 ψKG  . (A.3) 

The time independent equations that correspond to Eqs. (A.1)–(A.3) are:  

− ℏ
2 

2μ(r)
∇2 ϕ + V (r )ϕ = Eϕ, with Ψ = ϕe− i

ℏ
Et  . (A.4) 

− ℏ
2 

2μ'(r ) 
∇2 χ + V (r )χ = E 'χ,  with Ω = χe− i

ℏ
E 't . (A.5) 

−ℏ
2 c2∇2 φ = {

[ET − V (r )]2 − m2 c4
}
φ, with ψKG  = φe− i

ℏ
ET t . (A.6) 

By substituting ET by E + mc2 in Eq. (A.6), and after some algebraic 
manipulations, we obtain:

{
− ℏ

2 

2m 
∇2 + V (r ) − 

[E − V (r)]2 

2mc2

}
φ = Eφ. (A.7) 

But also, Eq. (A.7) can be obtained by pre-multiplying both sides of Eq. (A.4) 
by μ(r)/m and substituting μ(r) by its value in Eq. (A.1). This is the first half of the 
demonstration. 

Similarly, by substituting ET by E' − mc2 in Eq. (A.6), and after some algebraic 
manipulations, we obtain:

{
ℏ
2 

2m 
∇2 + V (r ) +

[
E ' − V (r )

]2 
2mc2

}
φ = E 'φ. (A.8) 

But also, Eq. (A.8) can be obtained by pre-multiplying both sides of Eq. (A.5) 
by μ'(r)/m and substituting μ'(r) by its value in Eq. (A.2). This completes the 
demonstration.
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Theorem II 

By solving the following Pauli-like equations (Chap. 6): 

iℏ
∂ 
∂t

Ψ = σ
∆

.
(
p
∆ − 

e 

c 
A
)[ 1 

2μ

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
Ψ + VΨ, V = eAo. (A.9) 

And: 

iℏ
∂ 
∂t

Ω = σ
∆

.
(
p
∆ − 

e 

c 
A
)[ 1 

2μ'

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
Ω + VΩ. (A.10) 

We can obtain the spinors and energies, Ψ and E, as well as Ω and E', that 
correspond to the exact solutions of the Dirac equation and total particle energies ET 

= E + mc2 and ET = E' − mc2, respectively. In Eqs. (A.9) and (A.10), A and Ao 

represent the vector and scalar potentials of electromagnetism. Note that the effective 
masses μ(r) and μ'(r) in Eqs. (A.9) and (A.10) are given by their values in Eqs. (A.1) 
and (A.2), respectively. 

Demonstration 

It is well-known that the Dirac equation (Annex B) is the correct Lorentz covariant 
equation that describes the interaction of a spin-(s = 1/2) particle, with mass m and 
charge e, with an external electromagnetic field. The stationary solutions of the Dirac 
equation are bi-spinors, which means they possess four components. They are of the 
form:

ΨD =
(

Ψ

Ω

)
=
(

ϕ 
χ

)
e−i ET

ℏ
t , with ϕ =

(
ϕ1 

ϕ2

)
, and χ =

(
χ1 

χ2

)
. (A.11) 

It is also widely known that the time independent Dirac equation is equivalent to 
the following system of two coupled spinor equations (Annex B): 

cσ
∆

.
(
p
∆ − 

e 

c 
A
)
χ = (

ET − mc2 − eAo
)
ϕ, with σ

∆ = (
σx , σy, σz

)
. (A.12) 

cσ
∆

.
(
p
∆ − 

e 

c 
A
)
ϕ = (

ET + mc2 − eAo
)
χ. (A.13) 

In Eq. (A.12), σi are the Pauli matrices. Eq. (A.13) can be rewritten as: 

c 

ET + mc2 − eAo 
σ
∆

.
(
p
∆ − 

e 

c 
A
)
ϕ = χ. (A.14) 

Substituting χ given by Eq. (A.14) in Eq.  (A.12), we obtain:
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cσ
∆

.
(
p
∆ − 

e 

c 
A
)[ c 

ET + mc2 − eAo

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
ϕ = (

ET − mc2 − eAo
)
ϕ. 

(A.15) 

Finally, making V = eAo and ET = E + mc2 in Eq. (A.15), we obtain the time 
independent Pauli-like PPGP equation: 

σ
∆

.
(
p
∆ − 

e 

c 
A
)[ 1 

2μ

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
ϕ + V ϕ = Eϕ, with 

1 

2μ 
= c2 

E + 2mc2 − V 
. 

(A.16) 

Consequently, the time dependent Pauli-like PPGP equation is Eq. (A.9). This is 
the first half of the demonstration. 

Similarly, Eq. (A.12) can be rewritten as: 

c(
ET − mc2 − eAo

)σ∆.
(
p
∆ − 

e 

c 
A
)
χ = ϕ. (A.17) 

Substituting ϕ given by Eq. (A.17) in Eq.  (A.13), we obtain: 

cσ
∆

.
(
p
∆ − 

e 

c 
A
)[ c(

ET − mc2 − eAo
)
]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
χ = (

ET + mc2 − eAo
)
χ.  

(A.18) 

Finally, making V = eAo and ET = E' − mc2 in Eq. (A.18), we obtain the 
complementary time independent Pauli-like PPGP equation: 

σ
∆

.
(
p
∆ − 

e 

c 
A
)[ 1 

2μ'

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
χ + V χ = E 'χ,  with 

1 

2μ' = c2 

E − 2mc2 − V 
. 

(A.19) 

Consequently, the complementary time dependent Pauli-like PPGP equation is 
Eq. (A.10). This completes the demonstration. 

It is worth noting, as stated in Sect. 6.4, that the Dirac wavefunctions given by Eq. 
(A.11) are bi-spinors. This means that for the total energy of the particle (ET ), Ψ D 
includes a spinor ϕ and a spinor χ. If  ET = E + mc2, Theorem II states that ϕ can be 
obtained by solving the Pauli-like PPGP equation (Eq. A.9). After ϕ is known, we 
can use Eq. (A.14) for obtaining χ. In contrast, if ET = E' − mc2, Theorem 2 states 
that χ can be obtained by solving the complementary Pauli-like PPGP equation (Eq. 
(A.10). After χ is known, we can use Eq. (A.17) for obtaining ϕ. This topic is covered 
in more detail in Annex G.
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Theorem III 

The particle’s wave equations that correspond to ET = E' − mc2, can be obtained 
from the antiparticle’s wave equations that correspond to ETa = Ea + mc2. Also, the 
antiparticle’s wave equations that correspond to ETa = E'

a − mc2, can be obtained 
from the particle’s wave equations that correspond to ET = E + mc2. 

Demonstration for Particles with Spin-(s = 0) 

An antiparticle is just another particle. A particle and its antiparticle contain the same 
mass m but opposite electric charge. Therefore, if the particle and the antiparticle 
are moving in the same external central potential, then the PPGP equations that 
correspond to a spin-(s = 0) charged particle are Eqs. (A.1) and (A.2). But because 
of the charge difference, the following equations correspond to the antiparticle: 

iℏ
∂ 
∂t

Ψa = − ℏ
2 

2μa(r )
∇2Ψa − V (r )Ψa, with μa(r ) =

[
1 + 

Ea + V (r ) 
2mc2

]
m. 

(A.20) 

iℏ
∂ 
∂t

Ωa = − ℏ
2 

2μ'
a(r )

∇2Ωa − V (r)Ωa, with μ'
a =

[
−1 + 

E '
a + V (r ) 
2mc2

]
m. 

(A.21) 

A comparison between Eqs. (A.1) and (A.2) and Eqs. (A.20) and (A.21) reveals 
that V changes to -V. This is because the particle and the antiparticle have charges 
of opposite signs, but they are moving in the same external world. The complex 
conjugate of Eq. (A.20) is the following equation: 

−iℏ
∂ 
∂t

Ψ∗ 
a = − ℏ

2 

2μa(r )
∇2Ψ∗ 

a − V (r)Ψ∗ 
a . (A.22) 

Or: 

iℏ
∂ 
∂t

Ψ∗ 
a =

ℏ
2 

2μa(r ) 
∇2Ψ∗ 

a + V (r )Ψ∗ 
a . (A.23) 

But E' = −Ea, so therefore: 

−μa(r ) =
[
−1 − 

Ea + V (r ) 
2mc2

]
m =

[
−1 + 

E ' − V (r ) 
2mc2

]
m = μ'(r ). (A.24) 

Substituting μa(r) by −μ' in Eq. (A.23), we obtain: 

iℏ
∂ 
∂t

Ψ∗ 
a = − ℏ

2 

2μ'(r )
∇2Ψ∗ 

a + V (r )Ψ∗ 
a (A.25)
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Therefore, (Ψ a *) satisfies Eq. (A.2). This means:

Ω = Ψ∗ 
a (A.26) 

This is the first half of the demonstration. 
Similarly, the complex conjugate of Eq. (A.1) is the following equation: 

−iℏ
∂ 
∂t

Ψ∗ = − ℏ
2 

2μ(r )
∇2Ψ∗ + V (r )Ψ∗ (A.27) 

Or: 

iℏ
∂ 
∂t

Ψ∗ = ℏ
2 

2μ(r )
∇2Ψ∗ − V (r)Ψ∗ (A.28) 

But E'
a = −E, so therefore: 

−μ(r ) =
[
−1 − 

E − V (r) 
2mc2

]
m =

[
−1 + 

E '
a + V (r) 
2mc2

]
m = μ'

a(r ) (A.29) 

Substituting μ(r) by −μ'
a in Eq. (A.28), we obtain: 

iℏ
∂ 
∂t

Ψ∗ = − ℏ
2 

2μ'
a(r )

∇2Ψ∗ − V (r )Ψ∗ (A.30) 

Therefore, Ψ * satisfies Eq. (A.21). This means:

Ωa = Ψ∗ (A.31) 

This completes the demonstration. It is worth noting that Eqs. (A.26) and (A.31) 
imply that: 

|Ω|2 = |Ψa|2 and |Ωa|2 = |Ψ|2 (A.32) 

Demonstration for Particles with Spin-(s = 1/2) 

If a particle with mass m and its antiparticle are moving in the same external electro-
magnetic field, then the PPGP equations that correspond to a spin-(s = 1/2) charged 
particle are Eqs. (A.9) and (A.10). But because of the charge difference, the following 
equations correspond to the antiparticle: 

iℏ
∂ 
∂t

Ψa = σ
∆

.
(
p
∆ + 

e 

c 
A
)[ 1 

2μa

]
σ
∆

.
(
p
∆ + 

e 

c 
A
)
Ψa − VΨa , with μa (r ) =

[
1 + 

Ea + V (r) 
2mc2

]
m. 

(A.33)
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iℏ
∂ 
∂t

Ωa = σ
∆

.
(
p
∆ + 

e 

c 
A
)[ 1 

2μ'
a

]
σ
∆

.
(
p
∆ + 

e 

c 
A
)
Ωa − VΩa , with μ'

a =
[
−1 + 

E '
a + V (r) 
2mc2

]
m. 

(A.34) 

A comparison of Eqs. (A.9) and (A.10) and Eqs. (A.33) and (A.34) reveals that 
V changes to -V and −eA/c changes to +eA/c. This is because the particle and the 
antiparticle have charges of opposite signs, but they are moving in the same external 
world. The complex transpose conjugate of Eq. (A.33) is depicted in the following 
equation: 

−iℏ
∂ 
∂t

Ψ† 
a =

{
σ̂ .
(
p̂ + 

e 

c 
A
)[ 1 

2μa

]
σ̂ .
(
p̂ + 

e 

c 
A
)}†

Ψ† 
a − VΨ† 

a . (A.35) 

But:

{
σ̂ .
(
p̂ + 

e 

c 
A
)[ 1 

2μa

]
σ̂ .
(
p̂ + 

e 

c 
A
)}† 

= σ̂ † .
(
− p̂ + 

e 

c 
A
)[ 1 

2μa

]
σ̂ † .
(
− p̂ + 

e 

c 
A
)

(A.36) 

The Pauli matrices given by Eq. (6.19) are Hermitic. This means that they are 
equal to their transpose conjugates: 

σ̂ † = [
σ̂ † x , σ̂ † y , σ̂ † z

] =
[(

0 1  
1 0

)
,

(
0 i 
−i 0

)
,

(
1 0  
0 −1

)]∗ 

= σ̂ . (A.37) 

Therefore, utilizing Eqs. (A.36) and (A.37), we can rewrite Eq. (A.35) in the  
following way: 

−iℏ
∂ 
∂t

Ψ† 
a = σ̂ .

(
p̂ − 

e 

c 
A
)[ 1 

2μa

]
σ̂ .
(
p̂ − 

e 

c 
A
)
Ψ† 

a − VΨ† 
a . (A.38) 

Or: 

iℏ
∂ 
∂t

Ψ† 
a = −σ̂ .

(
p̂ + 

e 

c 
A
)[ 1 

2μa

]
σ̂ .
(
p̂ + 

e 

c 
A
)
Ψ† 

a + VΨ† 
a . (A.39) 

But E' = −Ea. Therefore, utilizing Eq. (A.24) and substituting μa(r) by −μ' in 
Eq. (A.39), we obtain: 

iℏ
∂ 
∂t

Ψ† 
a = σ̂ .

(
p̂ + 

e 

c 
A
)[ 1 

2μ'(r )

]
σ̂ .
(
p̂ + 

e 

c 
A
)
Ψ† 

a + VΨ† 
a (A.40) 

Therefore, (Ψa 
†) satisfies Eq. (A.10). This means:

Ω = Ψ† 
a . (A.41)
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This is the first half of the demonstration. 
Similarly, the complex transposed conjugate of Eq. (A.9) is the following equation: 

−iℏ
∂ 
∂t

Ψ† =
{
σ̂ .
(
p̂ − 

e 

c 
A
)[ 1 

2μ

]
σ̂ .
(
p̂ − 

e 

c 
A
)}†

Ψ† + VΨ† . (A.42) 

But:

{
σ̂ .
(
p̂ − 

e 

c 
A
)[ 1 

2μ

]
σ̂ .
(
p̂ − 

e 

c 
A
)}† 

= σ̂ † .
(
− p̂ − 

e 

c 
A
)[ 1 

2μ

]
σ̂ † .
(
− p̂ − 

e 

c 
A
)
. 

(A.43) 

Therefore, utilizing Eqs. (A.43) and (A.37), we can rewrite Eq. (A.42) in the  
following way: 

−iℏ
∂ 
∂t

Ψ† = σ̂ .
(
p̂ + 

e 

c 
A
)[ 1 

2μ

]
σ̂ .
(
p̂ + 

e 

c 
A
)
Ψ† + VΨ† . (A.44) 

Or: 

iℏ
∂ 
∂t

Ψ† = −σ̂ .
(
p̂ + 

e 

c 
A
)[ 1 

2μ

]
σ̂ .
(
p̂ + 

e 

c 
A
)
Ψ† − VΨ† (A.45) 

But E'
a = −E. Therefore, utilizing Eq. (A.29) and substituting μa(r) by −μ' in 

Eq. (A.45), we obtain: 

iℏ
∂ 
∂t

Ψ† = σ̂ .
(
p̂ + 

e 

c 
A
)[ 1 

2μ'
a(r )

]
σ̂ .
(
p̂ + 

e 

c 
A
)
Ψ† − VΨ† (A.46) 

Therefore, (Ψ†) satisfies Eq. (A.34). This means:

Ωa = Ψ† . (A.47) 

This completes the demonstration. It is worth noting that Eqs. (A.41) and (A.47) 
imply that: 

|Ω|2 = IIΨ† 
a

II2 and |Ωa|2 =
IIΨ†

II2 . (A.48) 

The meaning of Eq. (A.48) could be illustrated with some instances. As shown in 
Fig. 8.3, the electron in a Hydrogen-like atom has bound quantum states where the 
electron’s total energy is ET = E + mc2. These electronic bound states are spatially 
localized around the nucleus of the Hydrogen-like atom. As illustrated in Fig. 8.5, due 
to Eq. (A.48), the repulsive interaction of a positron with the nucleus of a Hydrogen-
like atom produces bound quantum states where the positron’s total energy is ETa
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= E'
a − mc2. These positronic bound states are also spatially localized around the 

nucleus of the Hydrogen-like atom. 
In contrast, as shown in Fig. 8.4, the repulsive interaction of a positron with 

the nucleus of a Hydrogen-like atom produces unbound quantum states where the 
positron’s total energy is ETa = Ea + mc2. These positronic unbound states are 
spatially delocalized. As illustrated in Figs. 8.3–8.5, due to Eq. (A.48), the attrac-
tive interaction of the electron with the nucleus of a Hydrogen-like atom produces 
unbound quantum states where the electron’s total energy is ET = E' − mc2. These 
electronic unbound states are also spatially delocalized. 

Annex B: Dirac Equation 

The Dirac equation for a free particle with spin-(s = 1/2), charge e and mass m, that 
is interacting with an external electromagnetic field is: 

iℏ
∂ 
∂t

ΨD = cα
∆

.
(
p
∆ + 

e 

c 
A
)
ΨD + eAoΨD + mc2 β

∆

ΨD. (B.1) 

In Eq. (B.1), A and Ao are the vector and scalar potentials of electromagnetism (V 
= eAo). ΨD is the 4-components wavefunction given by Eq. (A.11). The operator β 
and each component of the vectorial operator α are 4 × 4 matrices: 

β
∆

=
(
I
∆

0 
0 −I

∆

)
, with I

∆

=
(
1 0  
0 1

)
. (B.2) 

α
∆ = (

α
∆

x , α
∆

y, α
∆

z
)
, with α

∆

i =
(

0 σ
∆

i 

σ
∆

i 0

)
, i = x, y, z. (B.3) 

In Eq. (B.2), the x, y, and z components of the operator α are defined in terms of 
the respective Pauli matrix given by Eq. (6.19). Looking for stationary solutions of 
the Dirac equation of the form:

ΨD =
(

Ψ

Ω

)
=
(

ϕ 
χ

)
e−i ET

ℏ
t , with ϕ =

(
ϕ1 

ϕ2

)
, and χ =

(
χ1 

χ2

)
. (B.4) 

Substituting Eq. (B.4) in (B.1), we obtain: 

ET

(
ϕ 
χ

)
= cα

∆

.
(
p
∆ + 

e 

c 
A
)(

ϕ 
χ

)
+ eAo

(
ϕ 
χ

)
+ mc2 β

∆
(

ϕ 
χ

)
. (B.5) 

Utilizing Eq. (B.2), we can rewrite Eq. (B.5) in the following way:
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cα
∆

.
(
p
∆ + 

e 

c 
A
)(

ϕ 
χ

)
= [ET − eAo]

(
ϕ 
χ

)
− mc2

(
I
∆

0 
0 −I

∆

)(
ϕ 
χ

)
. (B.6) 

But: 

mc2
(
I
∆

0 
0 −I

∆

)(
ϕ 
χ

)
= mc2

(
ϕ 

−χ

)
. (B.7) 

This allows to rewrite Eq. (B.6) as:  

cα
∆

.
(
p
∆ + 

e 

c 
A
)(

ϕ 
χ

)
= [ET − eAo]

(
ϕ 
χ

)
− mc2

(
ϕ 

−χ

)
. (B.8) 

Utilizing Eq. (B.3), we obtain: 

cα
∆

.
(
p
∆ + 

e 

c 
A
)(

ϕ 
χ

)
=
[

z∑
i=x 

a
∆

i

](
ϕ 
χ

)
, with a

∆

i =
[

0 cσ
∆

i
(
p
∆

i + e c Ai
)

cσ
∆

i
(
p
∆

i + e c Ai
)

0

]

(B.9) 

Or: 

cα
∆

.
(
p
∆ + 

e 

c 
A
)(

ϕ 
χ

)
= σ

∆

.
(
p
∆ + 

e 

c 
A
)(

χ 
ϕ

)
. (B.10) 

Utilizing Eq. (B.10), we can rewrite Eq. (B.8) in the following way: 

cα
∆

.
(
p
∆ + 

e 

c 
A
)(

χ 
ϕ

)
= [ET − eAo]

(
ϕ 
χ

)
− mc2

(
ϕ 

−χ

)
. (B.11) 

This is equivalent to the system of two spinor equations (Eqs. A.12 and A.13): 

σ
∆

.
(
p
∆ + 

e 

c 
A
)
χ = [

ET − eAo − mc2
]
ϕ. (B.12) 

σ
∆

.
(
p
∆ + 

e 

c 
A
)
ϕ = [

ET − eAo + mc2
]
χ. (B.13) 

Annex C: Classical Versus Quantum 

As discussed in Sect. 2.7, the observed stability of the atoms is thoroughly explained
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Fig. C.1 a There are no 
waves associated to a 
classical particle, b but two 
waves associated to a 
relativistic quantum particle 

in non-relativistic quantum mechanics. This is accomplished by assuming that there 
is a wave associated with a quantum particle. This wave is described by a wavefunc-
tion that ends up as a solution of a wave equation. As discussed in Chap. 2, if the  
particle has spin-(s = 0), the wave equation is the Schrödinger equation. However, 
as discussed in Chap. 6, if the particle has spin-(s = 1/2), the wave equation is the 
Pauli equation. 

The introduction of the special theory of relativity in quantum mechanics produces 
fundamental consequences. One of them is that there is not a wave, but there are two 
waves associated to a relativistic quantum particle. In contrast with nonrelativistic 
quantum particles, relativistic quantum particles can exist in two kinds of quantum 
states. 

The total energy of the relativistic quantum particle is ET = E + mc2 when 
the particle is in the first kind of quantum state. These states are associated with 
wave functions that are solutions of a wave equation, which is directly related to 
a nonrelativistic wave equation. If the relativistic quantum particle has spin-(s = 
0), the wave equation relates to the Schrödinger-like PPGP equation (Eq. A.1). In 
the nonrelativistic limit, Eq. (A.1) coincides with Schrödinger equation. However, 
if the relativistic quantum particle has spin-(s = 1/2), the wave equation is related 
to the Pauli-like PPGP equation (Eq. A.9). In the nonrelativistic limit, Eq. (A.9) 
coincides with Pauli equation. The PPGP equations can be formally obtained from 
the Schrödinger and Pauli equations by substituting the mass of the particle (m) by  
its relativistic effective mass μ, which is given by Eq. (A.1). This facilitates the 
simultaneous study of nonrelativistic and relativistic quantum mechanics. 

The total energy of the relativistic quantum particle is ET = E' − mc2 when 
the particle is in in the second kind of quantum states. We call these states “exotic” 
because they do not exist in nonrelativistic quantum mechanics. Exotic states are asso-
ciated with complementary wave equations. If the relativistic quantum particle has 
spin-(s = 0), the complementary wave equation is the complementary Schrödinger-
like PPGP equation (Eq. A.2). However, if the relativistic quantum particle has spin-
(s = 1/2), the complementary wave equation is the complementary Pauli-like PPGP 
equation (Eq. A.10). The relativistic effective mass of the quantum particle in the 
complementary wave equations is not μ, but  μ' given by Eq. (A.2).
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As illustrated in Fig. C.1, the most important and notable difference between a 
classical and a relativistic quantum particle is that there is not any wave associated 
with a classical particle, but there are two waves associated with a relativistic quantum 
particle. It is worth noting that there is never a single wave associated with a relativistic 
quantum particle. For instance, Eqs. (B.12) and (B.13) are valid for the electron, 
which is a spin-(s = 1/2) quantum particle. Therefore, χ does not exist if ϕ does not 
exist, and vice versa. 

Antiparticles are particles (other particles). Therefore, everything that we have 
discussed above about relativistic quantum particles is also valid for relativistic 
quantum antiparticles. There are two waves associated with a relativistic quantum 
antiparticle. However, an antiparticle without waves associated to it is then consid-
ered to be a classical antiparticle. We could then argue that something transcendental 
may occur if a relativistic quantum particle or antiparticle loses for any reason a 
wave, and then both waves associated to it. 

Interestingly, as it will be discussed below, there are good reasons to believe that 
relativistic quantum particles could get “naked” in extreme physical conditions. 

Atoms Cannot Be Too Heavy 

As discussed in Sect. 8.1, atoms with Z > 137 do not no exist. There is an attractive 
Coulombic interaction between the electron and the nucleus in a Hydrogen-like 
atom. This interaction produces bound states where the total energy of the electron 
is ET = E + mc2. As sketched in Fig. 8.3, the electrons’ wavefunctions in these 
bound states (Ψ) are spatially localized around the nucleus. As shown in Fig. 8.1, 
the spatial localization of Ψ increases when Z increases. Eventually, Ψ collapses 
to a point when Z is too large. When this happens, the relativistic quantum particle 
loses the two waves associated to it (Ψ and Ω). The “naked” particle without waves 
cannot form a stable atom. As discussed in Sect. 2.7, this is a fundamental result of 
relativistic quantum mechanics. Consequently, there are no atoms with Z > 137. 

As  shown in Fig.  8.1, the collapse ofΨ only occurs if the electron in the Hydrogen-
like atom is theoretically described using relativistic quantum mechanics. This indi-
cates that the inexistenceofatomswithZ >137couldbeconsideredasanobservational 
fact supporting the validity of both special theory of relativity and quantum mechanics. 

Quantum Objects Cannot Be Too Massive 

Large bodies with m > mP ≈ 22 μg are classical objects. This is a hypothesis presented 
in Sect. 8.2. This hypothesis argues that there should be a gravitational attractive inter-
action between different regions in a massive body. If this large body were a quantum 
object, then two waves (Ψ andΩ) should be associated to it. Consequently, the hypo-
thetical internal interaction should produce spatially localized quantum states (Ψ), 
where the total energy of the quantum object is ET = E + mc2. As shown in Fig. 8.2, 
the spatial localization of Ψ increases when m increases. Eventually, when m is too 
large,Ψ collapses to a point. When this happens, the relativistic quantum object loses 
the two waves associated to it (Ψ and Ω). The “naked” body without waves cannot 
be a quantum object, but a classical one.
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As shown in Fig. 8.2, the collapse of Ψ only occurs if the quantum object is 
theoretically described using relativistic quantum mechanics. It seems like we are 
often surrounded by macroscopic bodies that have an apparent classical nature. Our 
everyday experiences could then be considered as an enormous volume of observa-
tional facts supporting (1) the validity of the proposed hypothesis (a quantum object 
should gravitationally interact with itself), (2) special theory of relativity, and 3) 
quantum mechanics. 

We are not Surrounded by Antimatter 

Antimatter does not surround us, which is an observational fact. It is also a huge 
mystery because current physical theories predict that we should be surrounded 
by antimatter, but we are not. Nevertheless, an interesting hypothesis about this 
is discussed in Sect. 8.3. This hypothesis states that charged antimatter bodies 
containing |q| >  qP ≈ 11e should be classical objects. In contrast, charged matter 
objects with any electrical charge should be quantum objects. The hypothesis places 
the rupture of the theoretical symmetry between matter and antimatter in the elec-
trostatic interaction of a charged relativistic quantum body with itself. An antimatter 
charged relativistic quantum object should interact electrostatically with itself in 
a different manner than how a matter charged relativistic quantum body interacts 
electrostatically with itself. 

The hypothesis argues that there should be an electrostatic repulsive interaction 
between different regions in an extended antimatter object with charge q. If this anti-
matter body were a quantum object, then two waves (Ψa andΩa) should be associated 
to it. Consequently, the hypothetical internal interaction should produce spatially 
localized “exotic” quantum states (Ωa), where the total energy of the antimatter 
object is ETa = E'

a − mc2. 
We should note that the argument revolves around the spatial localization of exotic 

antimatter states Ωa. These states do not exist in nonrelativistic quantum mechanics. 
Therefore, this argument implies the theoretical framework of relativistic quantum 
mechanics. 

The hypothesis argues that the spatial localization of the wavefunction Ωa is 
produced by a repulsive interaction. This may be perceived with some skepticism, 
but this is because we have argued that the spatial localization of the wavefunction
Ψ is produced by an attractive interaction. Certainly, as sketched in Fig. 8.4, the  
repulsive Coulomb interaction between a positron and the nucleus of a Hydrogen-
like atom produces the spatial delocalization of the positronic wavefunction Ψa. 
However, as sketched in Fig. 8.5, the same repulsive interaction produces the spatial 
localization of the exotic positronic wavefunction Ωa. 

In relativistic quantum mechanics, attractive external interactions may produce 
the spatial localization ofΨ andΨa, but the spatial delocalization of the exotic states
Ω and Ωa. In contrast, repulsive external interactions may produce the spatial local-
ization of the exotic states Ω and Ωa, but the spatial delocalization of Ψ and Ψa. The  
equations of relativistic quantum mechanics do not include a possible interaction of 
a particle or antiparticle with itself. However, the hypothesis that we are considering 
explores the possibility of such interactions.
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As shown in Fig. 8.7, the spatial localization of the exotic stateΩa increases when 
|q| increases. Eventually, when |q| is too large, Ωa collapses to a point. When this 
happens. the antimatter quantum object loses the two waves associated to it (Ωa and
Ψa). The “naked” antimatter body without waves cannot be a quantum object, but a 
classical one. 

We should emphasize and elaborate on how the theoretical symmetry between 
matter and antimatter is broken in this hypothesis. The internal repulsive Coulomb 
interaction spatially delocalizes both the matter wavefunction Ψ and the antimatter 
wavefunction Ψa. However, this repulsive interaction spatially localizes the anti-
matter exotic wavefunction Ωa, but spatially delocalizes the matter wavefunction
Ω. This hypothesis does not explain the reason Mother Nature behaves in this way. 
However, it correctly predicts that Mother Nature should act as it seems to be. 

The rest of the argument is straightforward. Antimatter atoms with Z ≥ 12 cannot 
exist because a cloud formed by 12 positrons would be a “naked” antimatter object 
without waves, which is a classical object. Charged classical antimatter cannot form 
antimatter atoms. Antimatter atoms are needed for the existence of antimatter living 
beings. We are surrounded by matter, but not by the existence of antimatter. This is 
because of how the condition “classical if |q| >  qP ≈ 11e” does not apply to matter. 

As stated above, the collapse to a point ofΩa only occurs if the antimatter object is 
theoretically described using relativistic quantum mechanics. We are not surrounded 
by antimatter. This everyday experience could then be considered as a humongous 
aggregate of observational facts supporting the validity of (1) the proposed hypothesis 
(a charged quantum object should electrically interact with itself), (2) special theory 
of relativity, and (3) quantum mechanics. 

Primordial Black Holes and Antimatter Electrical Sinks 

Primordial black holes with a relatively small mass may exist. Primordial black holes 
may have been created around 13 billion years ago, at the beginning of our universe. 
Mass fluctuations with m > mP could have produced their formation. As discussed 
above, these hypothetical mass fluctuations may have formed primordial relativistic 
quantum objects. If their masses were larger than Planck’s mass, then the collapse 
to a point of Ψ may have created primordial black holes. At present, there is no 
observational evidence of the existence of primordial black holes. Nevertheless, the 
possible existence of these small mass black holes is a research topic of great interest 
in the modern day. 

Similarly, primordial antimatter electric sinks may have been created around 13 
billion years ago, at the beginning of our universe. Antimatter charge fluctuations with 
|q| >  qP could have produced their formation. As discussed above, these hypothet-
ical antimatter charge fluctuations may have formed primordial relativistic quantum 
objects. If their charges were larger than Planck’s charge, then the collapse to a point 
of Ωa may have created primordial electric sinks. This may explain the existence of 
an excess of charged matter in the rest of the universe.
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Annex D: Antiparticles 

As discussed in Sects. 3.3 and 4.3, an antiparticle is another particle. Historically, 
the existence of electrons was widely accepted before positrons were discovered 
in a cloud chamber in 1932. It was later proposed that there exists a relationship 
between positrons and the theoretically predicted Dirac’s quantum states, where the 
electron total energy is ET = E' − mc2. This relationship is illustrated in Fig. 3.3. As  
mentioned in Sect. 3.2, it was initially difficult to accept the existence of quantum 
states where the kinetic energy of a particle is negative. This motivated Schrödinger 
to put forth his undivided attention on a nonrelativistic wave equation. 

Today, we know that electrons and positrons are always created in pairs. Which 
one we call the particle, the electron, or the positron, is just an historical accident. 
Electrons are commonly referred to as particles because they were discovered before 
the positron. However, it would be strictly correct to refer to positrons as particles 
and electrons as the antiparticles associated to them. 

It is worth noting that if the hypothesis discussed in the previous Annex were to 
be correct, then we should solely be surrounded by matter. This would transform 
the historical accident into a necessity. Electrons are not antiparticles, but particles 
because we are surrounded and formed by them. The positron is the antiparticle of 
the electron, so positrons must be scarce. This is why they were discovered later. We 
could differentiate a charged particle from a charged antiparticle because we are not 
surrounded and formed by antiparticles, but by only particles instead. 

Nevertheless, we will only consider the interaction of particles and antiparti-
cles with the external world from now on. In this framework, relativistic quantum 
mechanics predict the existence of a complete matter-antimatter symmetry. 

Today, we know that there is a relationship between the “exotic” particle’s states 
(Ω), where ET = E' − mc2, and the antiparticle’s states (Ψa) where ETa = Ea + 
mc2. As expected from the theoretical matter-antimatter symmetry, there is also a 
relationship between the exotic antiparticle’s states (Ωa), where ETa = E'

a − mc2, 
and the particle’s states (Ψ) where ET = E + mc2. These relationships are stated in 
Theorem III in Annex A. 

This means that given a common external world, if we know Ea andΨa, we could 
obtain E' and Ω in the following way (Eqs. A.26 and A.41): 

E ' = −Ea, and
Ω = Ψ∗

a if s = 0
Ω = Ψ† 

a if s = 1/2 
. (D.1) 

Also, if we know E and Ψ, we could obtain E'
a and Ωa in the following way 

(Eqs. A.31 and A.47): 

E '
a = −E, and Ωa = Ψ∗ if s = 0

Ωa = Ψ† if s = 1/2 
. (D.2)
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Therefore, given a common external world, we only need to solve the PPGP 
equations that correspond to the particle and antiparticle of “regular” quantum states. 
If s = 0, these equations are (Eqs. A.1 and A.20): 

iℏ
∂ 
∂t

Ψ = − ℏ
2 

2μ(r )
∇2Ψ + V (r )Ψ, with μ(r ) =

[
1 + 

E − V (r ) 
2mc2

]
m. (D.3) 

And: 

iℏ
∂ 
∂t

Ψa = − ℏ
2 

2μa(r )
∇2Ψa − V (r )Ψa, with μa(r ) =

[
1 + 

Ea + V (r ) 
2mc2

]
m. 

(D.4) 

If s = 1/2, these equations are (Eqs. A.9 and A.33): 
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Ψ + VΨ, V = eAo. (D.5) 

And: 
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∂t
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.
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A
)
Ψa − VΨa . (D.6) 

All these equations are Schrödinger-like or Pauli-like equations. This makes it 
possible to simultaneously learn relativistic and nonrelativistic quantum mechanics. 

Annex E: A Relativistic Quantum Particle Confined 
in a Small Spatial Region 

As discussed in Chap. 2, the simplest model for explaining the stability of atoms is 
a quantum particle confined in a one-dimensional infinite well. This model captures 
the essential properties of a quantum particle, including that it has a wave associated 
to it. This wave is described by a wavefunction that can be obtained by solving a 
wave equation. The spatial localization of the wave associated to the quantum particle 
results in a discrete set of possible energy values. The minimum amount of energy 
possible is E = K > 0. Consequently, like an electron in the Hydrogen atom, the 
spatially confined quantum particle cannot lose all its kinetic energy. 

In Sect. 3.6, the model was improved from the consideration that the wave equa-
tion that should be solved was not the Schrödinger equation, but the Schrödinger-
like PPGP equation instead. For pedagogical simplicity, some naïve suppositions 
were introduced in Sect. 3.6. First, like in nonrelativistic quantum mechanics, it was 
assumed that the wavefunction of the relativistic quantum particle should be null 
outside of the infinite well. This naïve assumption was addressed in Chap. 4. It was
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Fig. E.1 A charged spin-(s = 0) particle a and b its antiparticle, that interact with the same external 
world, experience potentials with opposite signs 

discussed that, in contrast with the mass of the particle, the effective mass of a rela-
tivistic quantum particle (μ) is not constant. The Klein paradox was discussed, and 
it occurs because μ < 0 if  V > 2mc2. 

Second, like in nonrelativistic quantum mechanics, it was assumed that there is a 
single wavefunction (Ψ ) associated to a relativistic quantum particle. Consequently, 
the total energy of the particle was assumed to be ET = E + mc2. We know now that 
there also is a second wavefunction (Ω) associated to a relativistic quantum particle. 
The total energy of the particle in these exotic states is not ET = E + mc2, but instead 
ET = E' − mc2. In these exotic states the kinetic energy of the particle is negative. 

For completing the relativistic quantum mechanics description of a charged 
particle (with spin s = 0) in a one-dimensional infinite well, we should solve the 
complementary Schrödinger-like PPGP equation (Eq. A.2): 

iℏ
∂ 
∂t

Ω = − ℏ
2 

2μ'(x) 
∇2Ω + V (x)Ω, with μ'(x) =

[
−1 + 

E ' − V (x) 
2mc2

]
m. (E.1) 

Alternatively, if we assume a charged antiparticle that experiences the same 
external world than the charged particle, we should solve the Schrödinger-like PPGP 
equation for the antiparticle (Eq. A.20): 

iℏ
∂ 
∂t

Ψa = − ℏ
2 

2μa(x)
∇2Ψa − V (x)Ψa, with μa(x) =

[
1 + 

Ea + V (x) 
2mc2

]
m. 

(E.2) 

The potentials V (x) and −V (x) are sketched in Fig. E.1a, b, respectively. The 
energies (Ea) of the antiparticle in the state equal to Ψ a is Ea > − V (x) everywhere. 
In addition, the antiparticle’s relativistic effective mass is μa > 0 everywhere. There-
fore, there are no bound solutions of Eq. (E.2). Consequently, a continuous energy 
spectrum is associated to the antiparticle. Utilizing Eq. (D.1), we can then predict that 
there are no bound solutions of Eq. (E.1). There is a continuous amount of possible 
energy values, E' < 0, if the particle is in an exotic state Ω. Therefore, in the exotic
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states Ω, the kinetic energy of the relativistic quantum particle is negative inside of 
the infinite well. 

The energy distribution of the electronic states in the Hydrogen atom is sketched 
in Figs. 8.3a and 8.5c. Unsurprisingly, if we retain the naïve assumption that Ψ 
is null outside of the infinite well, then the energy distribution of particle’s states 
in the infinite one-dimensional well is also like the one sketched in these figures. 
Like the Coulomb potential in the Hydrogen atom, V (x), corresponds to an attractive 
interaction of the particle with the external world. This attractive external interaction 
spatially localizes ψ but delocalizes Ω. Particle’s Ψ states are bound, but exotic 
particle’s Ω states are unbound. There is then a discrete set of energy values, ET = 
E + mc2, but a continuous amount of energy values, ET = E' − mc2. 

As sketched in Fig. 8.4a, to an empty exotic particle state Ω corresponds the 
energy E' < 0. Thus in Eq. (D.1), E' < V (x) and μ' < 0 everywhere. This corresponds 
to an unbound hole in the Dirac’s Sea. The relativistic quantum antiparticle tends 
to sink to the Ψ a state with minimum positive energy (Fig. 8.4b), while a hole (an 
empty exotic particle’s state) tends to float in the Dirac’s Sea to the exotic particle’s 
state Ω with maximum negative energy (Fig. 8.4a). 

As sketched in Fig. 8.5, a particle is the antiparticle of the antiparticle. The antipar-
ticle’s wavefunctions Ψ a can be obtained by solving Eq. (E.2). As discussed above, 
the solutions of Eq. (E.2) correspond to unbound antiparticle’s states and a contin-
uous set of energy values, ETa = Ea + mc2. The antiparticle’s wavefunctions Ωa can 
be obtained by solving the following equation (Eq. A.21): 

iℏ
∂ 
∂t

Ωa = − ℏ
2 

2μ'
a(r )

∇2Ωa − V (x)Ωa, with μ'
a =

[
−1 + 

E '
a + V (x) 
2mc2

]
m. (E.3) 

The potential −V (x) is sketched in Fig. E.1b. We do not need to solve Eq. (E.3) 
because we already know the solution of the particle wave equation (Eq. A.1): 

iℏ
∂ 
∂t

Ψ = − ℏ
2 

2μ(r )
∇2Ψ + V (r )Ψ, with μ(r) =

[
1 + 

E − V (r ) 
2mc2

]
m. (E.4) 

In Sect. 3.6, assuming that Ψ is null outside of the infinite well, Eq. (E.4) was  
solved. It was found that Eq. (E.4) has bound solutions (Ψ ) and there is a discrete 
set of energies, ET = E + mc2. The energy that corresponds to a bound state Ψ is E 
> 0; therefore, E > V (x) inside of the  well  but  E < V (x) outside of it. 

Due to Eq. (D.2), Eq. (E.3) has bound solutions (Ωa = Ψ *) and there is a discrete 
set of energies, ET = E'

a − mc2. In contrast with the particle states, the energy that 
corresponds to a bound exotic antiparticle state Ωa is E'

a = −E < 0. Therefore, E'
a 

< V (x) inside of the well, but E'
a > V(x) outside of it. As sketched in Fig. 8.5b, an 

empty exotic antiparticle state Ωa corresponds to a bound hole in the Dirac’s Sea. 
The relativistic quantum particle tends to sink to the Ψ state with minimum positive 
energy (Fig. 8.5c), while a hole (an empty exotic antiparticle’s state) tends to float 
in the Dirac’s Sea to the exotic antiparticle state Ωa with maximum negative energy 
(Fig. 8.5b).
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Fig. E.2 Distribution of energy states that correspond to a a charged spin-(s = 0) particle and 
b its antiparticle moving in the same external world. The external world confines the particle in an 
infinite well 

The energy distribution of the positronic states, which are a result of the repulsive 
interaction of a positron with the nucleus of a Hydrogen atom, is sketched in Fig. 8.5b. 
Foreseeable, if we retain the naïve assumption that Ψ is null outside of the infinite 
well, and if the antiparticle interacts with the same infinite one-dimensional well that 
traps the particle, then the energy distribution of antiparticle’s states is also like the 
one sketched in Fig. 8.5b. Like the repulsive Coulomb interaction between a positron 
and the nucleus of a Hydrogen atom, −V (x) corresponds to a repulsive interaction of 
the antiparticle with the external world. This repulsive external interaction spatially 
delocalizes Ψ a but localizes the exotic antiparticle states of Ωa. Antiparticle’s Ψ a 
states are unbound, but exotic antiparticle’s Ωa states are bound. There is then a 
continuous set of energy values, ETa = Ea + mc2, but discrete set of energy values, 
ETa = E'

a − mc2. 
The discussion above is summarized in Fig. E.2. As sketched in Fig. E.2a, the 

attractive interaction of a charged particle with the potential V (x), which is produced 
by the external world that surrounds the particle, spatially localizes the particle states 
Ψ . This produces a discrete set of energy values, ET = E + mc2. The same external 
attractive interaction spatially delocalizes the exotic particle states Ω. This produces 
a continuous set of energy values, E'

T = E' − mc2. An observable particle trapped 
in the infinite well corresponds to all the exotic particle states Ω being occupied by 
particles. In addition, the observed particle occupies the bound particle state Ψ with 
minimum energy in the ground state. 

As sketched in Fig. E.2b, the repulsive interaction of the charged antiparticle with 
the same external world that surrounds the particle, spatially delocalizes the antipar-
ticle states Ψ a. This produces a continuous set of energy values, ETa = Ea + mc2. The  
same external repulsive interaction spatially localizes the exotic antiparticle states 
Ωa. This produces a discrete set of energy values, E'

Ta = E'
a − mc2. An observable 

antiparticle, that is in the same infinite well that traps the particle, corresponds to
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all the exotic antiparticle states Ωa being occupied by antiparticles. In addition, the 
observed antiparticle occupies an unbound antiparticle state (Ψ a). 

Annex F: Mathematical Formalism of Quantum Mechanics 

In this Annex, without being extremely careful about the mathematical intricacies 
involved in this subject, we want to give the reader a general idea about the mathemat-
ical apparatus of quantum mechanics. For simplicity, we will refer to nonrelativistic 
quantum mechanics where there is a wave associated with a quantum particle. This 
wave is mathematically represented by a wavefunction. Wavefunctions are solutions 
of linear wave equations and are multi-dimensional vectors of a Hilbert space. Several 
mathematical topics should be extensively covered to give a practical meaning to the 
previous sentences. 

Linear Algebra in Quantum Mechanics 

[In quantum mechanics, a vector space consists of a set of vectors (wavefunctions 
|α〈, |  β〈, |γ 〈,…), together with a set of scalars (complex numbers a, b, c, …) which 
are subject to two operations of vector addition and scalar multiplication]. 

The vector addition satisfies the following properties. The sum of any two vectors 
is another vector: 

|α〈 + |β〈 = |γ〈. (F.1) 

The vector addition is commutative: 

|α〈 + |β〈 = |β〈 + |α〈. (F.2) 

And associative: 

|α〈 +  (|β〈 + |γ 〈) = (|α〈 + |β〈) + |γ〈. (F.3) 

There exist a zero (or null) vector, |0〈, with the property that for every vector |α〈: 

|α〈 + |0〈 = |α〈. (F.4) 

And for every vector |α〈, there is an associated inverse vector |-α〈, such that: 

|α〈 + | −  α〈 = |0〈. (F.5) 

The scalar multiplication satisfies the following properties. The product of any 
scalar with any vector is another vector: 

a|α〈 = |β〈. (F.6)
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Scalar multiplication is distributive with respect to vector addition: 

a(|α〈 + |β〈) = a|α〈 +  a|β〈. (F.7) 

Also, scalar multiplication is distributive with respect to scalar addition: 

(a + b)|α〈 =  a|α〈 +  b|α〈. (F.8) 

It is also associative with respect to the ordinary multiplication of scalars: 

a(b|α〈) = (ab)|α〈. (F.9) 

From these properties it follows that: 

0|α〈 = |0〈 and | −  α〈 =  (−1)|α〈. (F.10) 

[Always remember that, in quantum mechanics, wavefunctions are vectors of a 
linear algebra and the scalars are complex numbers]. 

A linear combination of the vectors |α〈, |β〈, |γ〈, … is an expression of the form: 

a|α〈 +  b|β〈 +  c|γ 〈 +  . . . (F.11) 

A vector | λ > is said to be linearly independent of the set of vectors |α〈 , |β〈, |γ〈, 
… if it cannot be written as a linear combination of these vectors. By definition, a set 
of vectors is linearly independent if each one is linearly independent of all the rest. 

[For example, any polynomial equation can be represented as a linear combination 
of other polynomials. If we choose our set of linearly independent vectors to include 
all real polynomials, {φ} = a + bx + cx2 + · · ·  , then the equation f (x) = x + 3x2 can 
be formed using coefficients a = 0, b = 1, c = 3 and all other coefficients equal to 0. 
This is precisely what it means to be a linear combination. Note that the components 
of this linear combination cannot be represented as a linear combination themselves. 
This means x cannot be written as an addition (combination) of x2 or x3 and so on]. 

A collection of vectors is said to span the “space formed by all vectors” if every 
vector can be written as a linear combination of the members of this set. A set of 
linearly independent vectors that span a space is considered to be a basis. The number 
of vectors in any basis is called the dimension of the space. 

[For instance, the wavefunctions given by Eq. (2.54) in Chap. 2 (which are solu-
tions of the time independent Schrödinger equation for a one-dimensional infinite 
well), are the vectors: 

|ϕn〈 =  ϕn(x) =
/

2 

L 
sin
(nπ 
L 

x
)
, with n = 1, 2, . . . (F.12) 

These vectors form a basis of the space formed by all the wavefunctions φ(x) in  
the form:
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|φ〈 =  φ(x) = 
+∞∑
n=1 

cnϕn(x). (F.13) 

The dimension of this space of functions is infinite because there are infinite 
linearly independent functions ϕn(x)]. 

For the moment, let us assume that the dimension of a space (N) is finite. With 
respect to a prescribed basis: 

|θ 1〈, |θ 2〈, . . .  |θ N 〈. (F.14) 

Any given vector: 

|α〈 =  
N∑

n=1 

an|θ 1〈. (F.15) 

It is uniquely represented by the ordered N-tuple of its components: 

|α〈 ↔  (a1, a2, . . . ,  aN ). (F.16) 

This is of practical importance because it is often easier to work with the compo-
nent than with the abstract vectors themselves. For instance, to add vectors, we add 
their corresponding components: 

|α〈 + |β〈 ↔  (a1 + b1, a2 + b2, . . . ,  aN + bN ). (F.17) 

To multiply by a scalar, you multiply both components: 

c|α〈 ↔  (ca1, ca2, . . . ,  caN ). (F.18) 

The null vector is represented by a string of zeros: 

|0〈 ↔  (0, 0, . . . ,  0) (F.19) 

And: 

| −  α〈 ↔  (−a1, −a2, . . . ,  −aN ) (F.20) 

Inner Products 

The inner product of two vectors (|α〈 and |β〈), is a complex number (which we write
〈α|β〈), with the following properties:

〈β|α〈 = 〈α|β〈∗, and 〈α|α〈= 0 if  |α〈 = |0〈
> 0 if  |α〈 /= |0〈 . (F.21)
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And:

〈α|(b|β〈 +  c|γ 〈)〈 =  b〈α|β〈 +  c〈α|γ 〈. (F.22) 

A vector space with an inner product is called an inner product space. Because Eq. 
(F.21), the inner product of any vector with itself is a nonnegative number, meaning 
its corresponding square root is real. We call this the norm of the vector: 

||α〈| = √〈α|α〈. (F.23) 

A vector is said to be normalized if its norm is equal to 1. Two vectors whose 
inner product equals zero are called orthogonal. A collection of mutually orthogonal 
normalized vectors is called an orthonormal set:

〈αi |αi 〈 =  δi j  . (F.24) 

It is always possible and convenient to work using an orthonormal basis. If this 
is the case, then the inner product of two vectors can be written very neatly in terms 
of their components:

〈α|β〈 =  a∗ 
1b1 + a∗ 

2b2 +  · · ·  +  a∗ 
N bN . (F.25) 

The norm becomes: 

||α〈| = 
/

|a1|2 + |a2|2 +  · · ·  +  |aN |2 . (F.26) 

And the components of vector given by Eq. (F.15) are:  

an = 〈θn|α〈. (F.27) 

[Therefore, the wavefunctions given by Eq. (F.12) form an inner product space of 
dimension that is infinite. These functions form an orthonormal set because:

〈ϕn' |ϕn〈 =
∫ L 

0 
[ϕn'(x)]∗ϕn(x)dx  = 

2 

L

∫ L 

0 
sin

(
n'π 
L 

x

)
sin
(nπ 
L 

x
)
dx  = δn'n. 

(F.28) 

Any other vector, |φ〈, can be represented as: 

|φ〈 =  φ(x) = 
+∞∑
n=1 

cnϕn(x), with cn = 〈θn|φ〈 =  
+∞∑
n=1 

cn〈ϕn' |ϕn〈. (F.29)
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Linear Transformations 

[In quantum mechanics, operators are linear transformations that transform any 
vector (wavefunction) of an inner product space into another vector (function) of 
the same space: 

T
∆

|α〈 = |γ 〈. (F.30) 

The transformation is linear if and only if for any two vectors and scalars: 

T
∆

(a|α〈 +  b|β〈) = aT
∆

|α〈 +  bT
∆

|β〈. (F.31) 

In linear algebra, the theory of linear transformations is related to the theory of 
matrices. 

[In this book, we have primarily used operators in their differential form (Table 2.1 
in Chap. 2 contains some instances). This corresponds to the formulation of wave 
mechanics in quantum mechanics. Quantum mechanics can also be formulated in 
an equivalent matrixial form. Historically, Heisenberg’s matrixial formulation of 
quantum mechanics was discovered shortly before the Schrödinger wave-based 
proposal. Below, we will summarize some important results of the theory of linear 
transformations in its matrixial form]. 

Let us suppose an inner product space of finite dimension (N), and an orthonormal 
set that allows for writing any vector (function) of the space as: 

|φ〈 =  φ(x) = 
N∑
j=1 

d j |θ j 〈, with d j = 〈θ j |φ〈, and 〈θ j ' |θ j 〈 =  δ j ' j . (F.32) 

There is then a one-to-one correspondence between φ(x) and the list of N complex 
numbers (d1, d2, …,  dN). We can then represent a linear transformation of the vector 
|φ〈 in two equivalent forms: 

T
∆

|φ〈 = |γ 〈 =  
N∑
j=1 

c j |θ j 〈. (F.33) 

Or: 

T
∆

⎡ 

⎢⎢⎣ 

d1 
d2 
. . .  
φN 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

c1 
c2 
. . .  
cN 

⎤ 

⎥⎥⎦. (F.34) 

The second form suggests that the linear transformation can be represented by a 
matrix. From Eq. (F.32), it follows that:
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〈θi |T
∆

|φ〈 =  
N∑
j=1 

d j 〈θi |T
∆

|θ j 〈. (F.35) 

From Eq. (F.33), it follows that:

〈θi |γ 〈 =  ci . (F.36) 

Therefore, from Eqs. (F.33) to (F.36), it follows that:

〈θi |T
∆

|φ〈 =  
N∑
j=1 

d j 〈θi |T
∆

|θ j 〈 = 〈θi |γ 〈 =  ci . (F.37) 

Or, in matrix notation: 

T
∆

⎡ 

⎢⎢⎣ 

d1 
d2 
. . .  
dN 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

c1 
c2 
. . .  
cN 

⎤ 

⎥⎥⎦, with T
∆

= 

⎛ 

⎜⎜⎝ 

T11 T12 
T21 T22 

. . .  T1N 

. . .  T2N 
. . .  .  . .  
TN1 TN1 

. . .  .  . .  

. . .  TNN  

⎞ 

⎟⎟⎠, and Ti j  = 〈θi |T
∆

|θ j 〈. 

(F.38) 

The study of linear transformations then reduces to the theory of matrices. The 
sum and multiplication of linear transformations are defined and have the properties 
of the sum and multiplication of matrices:

(
S
∆

+ T
∆)

|α〈 =  S
∆

|α〈 +  T
∆

|α〈 ⇐⇒
(
S
∆

+ T
∆)

i j  
= S

∆

i j  + Ti j  . (F.39) 

The product of two linear transformations is the net effect of performing them in 
succession. The multiplication of matrices is not commutative, so the order in which 
the linear transformations are applied is important:

(
S
∆

T
∆)

|α〈 =  S
∆(

T
∆

|α〈
)

/=
(
T
∆

S
∆)

|α〈 =  T
∆(

S
∆

|α〈
)
. (F.40) 

The elements of the matrix resulting from the multiplication of two matrices are:

(
S
∆

T
∆)

i j  
= 

N∑
k=1 

S
∆

ikTk j  . (F.41) 

The commutator of two matrices is:
[
S,
∆

T
∆]

= S
∆

T
∆

− T
∆

S
∆

. (F.42)
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Two matrices commutative if and only if their commutator is null. 
[Heisenberg’s uncertainty principle is a consequence of the non-commutativity 

of the multiplication of matrices. In wave quantum mechanics, a quantum particle 
cannot simultaneously have well-determined values of its position and linear 
momentum because these operators do not commute: 

x
∆

p
∆

ϕ(x) = −iℏx 
∂ 
∂x 

ϕ(x) /= p
∆

x
∆

ϕ(x) = −iℏ
∂ 
∂ x 

[xϕ(x)]. (F.43) 

The transpose of a matrix is the same set of elements, but with rows and columns 
interchanged: 

T
∆

= 

⎛ 

⎜⎜⎝ 

T11 T12 
T21 T22 

. . .  T1N 

. . .  T2N 
. . .  . . .  
TN1 TN2 

. . .  .  . .  

. . .  TNN  

⎞ 

⎟⎟⎠ ⇒
∼ 
T= 

⎛ 

⎜⎜⎝ 

T11 T21 
T12 T22 

. . .  TN1 

. . .  TN2 

. . .  . . .  
T1N T2N 

. . .  .  . .  

. . .  TNN  

⎞ 

⎟⎟⎠. (F.44) 

Notice and note the hat ~ used for symbolizing the transpose matrix. Also, make 
a note that the transpose of a column matrix is a row matrix and vice versa: 

|φ〈 ↔  

⎡ 

⎢⎢⎣ 

φ1 

φ2 

. . .  
φN 

⎤ 

⎥⎥⎦ ⇒ ∼|φ〈 ↔  (φ1, φ2, . . . , φN ) (F.45) 

The transpose of a product of matrices is the product of the transposes in reverse 
order: 

If P
∆

= S
∆

T
∆

then P̃ =∼ 
T

∼ 
S . (F.46) 

The complex transpose conjugate of a matrix (T†) is the complex conjugate of its 
transpose: 

T̂ = 

⎛ 

⎜⎜⎝ 

T11 T12 
T21 T22 

. . .  T1N 

. . .  T2N 
. . .  . . .  
TN1 TN1 

. . .  .  . .  

. . .  TNN  

⎞ 

⎟⎟⎠ ⇒ T † =
(
T̃
)∗ = 

⎛ 

⎜⎜⎝ 

T ∗11 T ∗21 
T ∗12 T ∗22 

. . .  T ∗ 
N1 

. . .  T ∗ 
N2 

. . .  .  . .  
T ∗ 
1N T 

∗ 
2N 

. . .  .  . .  

. . .  T ∗ 
NN  

⎞ 

⎟⎟⎠ (F.47) 

T† is also known as the Hermitian conjugate or adjoint of the matrix T. A square 
matrix is Hermitian if it is equal to its Hermitian conjugate: 

T̂ = T † (F.48) 

For instance, the following matrix is Hermitian:
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T
∆

= 

⎛ 

⎝ 
1 i i  
−i 1 −i 
−i i  1 

⎞ 

⎠. (F.49) 

The Hermitian conjugate of a product of matrices is the product of the adjoints in 
reverse order: 

If P̂ = Ŝ T̂ then P† = T † S† (F.50) 

Equation (F.48) gives a definition of a Hermitian transformation. An alternative 
definition of a Hermitian linear transformation involves the inner product of any two 
vectors |α〈 and |β〈 in the following way: 

T † α|β = α| T̂ β (F.51) 

This means that a linear transformation is Hermitian if and only if the inner product 
of the vectors T†|α〈 and |β〈 (〈T†α| β〈) is equal to inner product of the vectors: 

|α〈 and T
∆

|β〈
(
〈α|T

∆

β〈
)
. 

Most of the operators (linear transformations) used in quantum mechanics are 
Hermitian. For instance, in Chap. 2, the time independent Schrödinger equation for 
a particle in the one-dimensional infinite well is: 

H
∆

ϕn(x) = Enϕn(x). (F.52) 

Therefore:

〈ϕn' |H
∆

ϕn(x)〈 =  En〈ϕn' |ϕn〈 =  Enδn'n. (F.53) 

Also:

〈H
∆

ϕn(x)|ϕn' 〈 =  En〈ϕn|ϕn' 〈 =  Enδn'n. (F.54) 

This implies that the total energy operator is Hermitian: 

Ĥ = Ĥ † (F.55) 

Eigenvectors and Eigenvalues 

Eigenvector equations are equations of the form: 

T
∆

|α〈 =  λ|α〈. (F.56)
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The vectors (|α〈) and scalars (λ) satisfying Eq. (F.56) are name eigenvectors and 
eigenvalues, respectively. 

[Time independent Schrödinger equations are eigenvector equations. A large part 
of most introductory courses of quantum mechanics is dedicated to the development 
of mathematical skills needed for solving eigenvector equations]. 

The eigenvectors and eigenvalues of Hermitian transformations (operators) have 
three important properties, which will be explained below. 

First, the eigenvalues of a Hermitian transformation are real. 

Demonstration 

Let λ be an eigenvalue of Eq. (F.56), with |α〈 /= |0〈. Therefore:

〈α|T
∆

α〈 = 〈α|λα〈 =  λ〈α|α〈. (F.57) 

Meanwhile, if the transformation is Hermitian, then:

〈α| T̂ α〈 =  T †〈α|α〈 =  λ∗〈α|α〈 (F.58) 

But due to Eq. (F.21), 〈α|α〈 /= 0, so λ = λ*, and hence λ is real. 
[In quantum mechanics, as discussed Sect. 2.3, a Hermitian operator is associated 

to each observable physical magnitude. The reason for this is that measurements of 
physical magnitudes always return as real numbers. The real eigenvalues of the 
corresponding eigenvector equation are the only possible values of the physical 
magnitude associated to a Hermitian operator]. 

Second, the eigenvectors of a Hermitian transformation belonging to distinct 
eigenvalues are orthogonal. 

Demonstration 

Suppose that: 

T
∆

|α〈 =  λ|α〈, and T
∆

|β〈 =  μ|β〈, with λ /= μ. (F.59) 

Then:

〈α|T
∆

|β〈 = 〈α|μβ〈 =  μ〈α|β〈. (F.60) 

If the transformation is Hermitian:

〈α| T̂ |β〈 =  T †〈α|β〈 =  λ〈α|β〈 =  λ∗〈α|β〈 (F.61) 

But λ = λ* (from the first property), and λ /= μ, by assumption, so < α|β > = 0. 

Third, the eigenvectors of a Hermitian transformation span the vector space. This 
property will be given here without demonstration.
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[These properties together, with the linearity of the Schrödinger equation, justify 
the assertion made in Chap. 2.58 about Eq. (2.7) being the general solution of 
Eq. (2.49). This also justifies Eq. (2.59)]. 

Hilbert Space 

A complete inner product space is called a Hilbert space. Complete could mean that 
the space is formed by all square-integrable functions on the interval −1 <  x < +1. 
Technically, it is called L2(−1, +1). More generally, the set of all square-integrable 
functions in the interval a < x < b is L2(a, b). The Hilbert space L2(−∞, +∞) is  
most often used in quantum mechanics. 

[For instance, Eq. (F.28) shows that the wavefunction ϕn(x) are vectors of the 
Hilbert space L2(−∞, +∞)]. 

Annex G: About the Non-linearity of the PPGP Equations 

The mathematical formalism of quantum mechanics (linear algebra, linear transfor-
mations, inner product spaces, and Hilbert spaces), requires linear wave equations. 
The Schrödinger equation is a linear equation. Also, the Klein-Gordon and Dirac 
equations are linear. However, the PPGP equations are not strictly linear. 

For instance, let us consider the Schrödinger-like PPGP equation for a spin-(s = 
0) particle in a constant potential (Eq. 3.86): 

iℏ
∂ 
∂t

Ψ = − ℏ
2 

2μ 
d2 

dx2
Ψ + VΨ, with μ =

(
1 + 

E − V 
2mc2

)
m. (G.1) 

This equation is not linear because μ depends on E. If  Ψ 1 and Ψ 2 are respectively 
distinct solutions of Eq. (G.1) with E = E1 and E = E2, respectively, then the effective 
mass of the relativistic quantum particle is different in these quantum states: 

If E1 /= E2 ⇒ μ1 =
(
1 + 

E1 − V 
2mc2

)
m /= μ2 =

(
1 + 

E2 − V 
2mc2

)
m. (G.2) 

Therefore, Ψ 1 satisfies the following equation: 

iℏ
∂ 
∂t

Ψ1 = − ℏ
2 

2μ1 

d2 

dx2
Ψ1 + VΨ1. (G.3) 

While Ψ 2 satisfies a different equation: 

iℏ
∂ 
∂t

Ψ2 = − ℏ
2 

2μ2 

d2 

dx2
Ψ2 + VΨ2. (G.4) 

However, in general, a linear combination of these two solutions:
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Ψ = aΨ1 + bΨ2. (G.5) 

It is a solution of neither Eq. (G.3) nor (G.4), and it is not a solution of Eq. (G.1). 
Nevertheless, as demonstrated in Annex A, we can find the solution of the Klein-
Gordon equation with ET = E + mc2 by solving Eq. (G.1). This means that the 
wavefunction Ψ given by Eq. (G.5) is a solution of the Klein-Gordon equation. 

Similarly, as discussed in Annex A, by solving the following complementary 
Schrödinger-like PPGP equation: 

iℏ
∂ 
∂t

Ω = − ℏ
2 

2μ'
d2 

dx2
Ω + VΩ, with μ' =

(
−1 + 

E ' − V 
2mc2

)
m. (G.6) 

We can find two distinct solutions Ω1 and Ω2 of Eq. (G.6) with E' = E'
1 and E'

= E'
2, which are also solutions of the Klein-Gordon equation with ET = E' − mc2. 

The effective mass of the relativistic quantum particle is different in these quantum 
states: 

If E '
1 /= E '

2 ⇒ μ'
1 =

(
−1 + 

E '
1 − V 
2mc2

)
m /= μ'

2 =
(

−1 + 
E '
2 − V 
2mc2

)
m. (G.7) 

Therefore, Ω1 satisfies the following equation: 

iℏ
∂ 
∂t

Ω1 = − ℏ
2 

2μ'
1 

d2 

dx2
Ω1 + VΩ1. (G.8) 

While Ω2 satisfies a different equation: 

iℏ
∂ 
∂t

Ω2 = − ℏ
2 

2μ'
2 

d2 

dx2
Ω2 + VΩ2. (G.9) 

However, in general, a linear combination of these two solutions:

Ω = aΩ1 + bΩ2. (G.10) 

It is a solution of neither Eq. (G.8) nor (G.9), and it is not a solution of Eq. (G.6). 
Nevertheless, the wavefunction Ω, given by Eq. (G.10), is a solution of the Klein-
Gordon equation. Consequently, a general solution of the Klein-Gordon equation 
can be written as a linear superposition of all the distinct solutions of Eqs. (G.1) and 
(G.6). 

For similar reasons, the Pauli-like PPGP equation for a spin-(s = 1/2) charged 
particle, in a constant electrostatic potential, is also non-linear: 

iℏ
∂ 
∂t

Ψ = σ
∆

. p
∆
[

1 

2μ

]
σ
∆

. p
∆

Ψ + VΨ, V = eAo, with μ =
(
1 + 

E − V 
2mc2

)
m. 

(G.11)
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In this case, μ is constant, so Eq. (G.11) can be simplified to: 

iℏ
∂ 
∂t

Ψ =
(
σ
∆

. p
∆)2 

2μ
Ψ + VΨ = − ℏ

2 

2μ 
∇2Ψ + VΨ. (G.12) 

Therefore, each component of the spinor Ψ satisfies de Grave de Peralta (GP) 
equation: 

iℏ
∂ 
∂t 

ψi = − ℏ
2 

2μ
∇2 ψi + V ψi , with Ψ =

(
ψ1 

ψ2

)
, i = 1, 2. (G.13) 

In the non-relativistic limit, E − V << mc2, the GP equation coincides with the 
Schrödinger equation. However, in general, the GP equation is nonlinear because μ 
depends on E. As discussed above, if ψ1 and ψ2 are distinct solutions of Eq. (G.13) 
with E = E1 and E = E2, respectively, then the effective mass of the relativistic 
quantum particle is different in these quantum states (Eq. G.2). Therefore, ψ1 satisfies 
the following equation: 

iℏ
∂ 
∂t 

ψ1 = − ℏ
2 

2μ1 
∇2 ψ1 + V ψ1. (G.14) 

While ψ2 satisfies a different equation: 

iℏ
∂ 
∂t 

ψ2 = − ℏ
2 

2μ2 

d2 

dx2 
ψ2 + V ψ2. (G.15) 

However, in general, a linear combination of these two solutions: 

ψ = aψ1 + bψ2. (G.16) 

It is a solution of neither Eq. (G.14) nor (G.15), and it is also not a solution of Eq. 
(G.13). Consequently, if the spinors Ψ1 and Ψ2 are distinct solutions of Eq. (G.11) 
with E = E1 and E = E2, respectively, then:

Ψ = aΨ1 + bΨ2. (G.17) 

In general, it is not a solution of Eq. (G.11). Nevertheless, we can utilize Eq. (A.14) 
for constructing the Dirac wavefunction (ΨD1) given by Eq. (A.11) that corresponds 
to the total energy of the particle ET = E1 + mc2. If the first spinor forming the 
bi-spinor ΨD1 is the following solution of Eq. (G.11):

Ψ1 = ϕ1e
− i

ℏ
E1t . (G.18) 

Then, the second spinor is:
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Ω1 = χ1e
− i

ℏ
E1t . (G.19) 

In Eq. (G.19), the spinor χ1 is related to the spinor ϕ1 through Eq. (A.14). 
Therefore:

ΨD1 =
(

Ψ1

Ω1

)
, corresponds to ET = E '

1 − mc2 (G.20) 

Following the same approach, we can obtain that the Dirac wavefunction that 
corresponds to Ψ2 is:

ΨD2 =
(

Ψ2

Ω2

)
, corresponds to ET = E '

2 − mc2 (G.21) 

Consequently, a linear superposition of these two Dirac wavefunctions is also a 
solution of the Dirac equation:

ΨD = aΨD1 + bΨD2 (G.22) 

Similarly, as discussed in Annex A, we could solve the following complementary 
Pauli-like PPGP equation: 

iℏ
∂ 
∂t

Ω = σ
∆

. p
∆
[

1 

2μ'

]
σ
∆

. p
∆

Ω + VΩ, with μ' =
(

−1 + 
E ' − V 
2mc2

)
m. (G.23) 

In this case μ' is constant, so Eq. (G.23) can be simplified to: 

iℏ
∂ 
∂t

Ω =
(
σ
∆

. p
∆)2 

2μ' Ω + VΩ = − ℏ
2 

2μ
∇2Ω + VΩ. (G.24) 

Therefore, each component of the spinor Ω satisfies de complementary GP 
equation: 

iℏ
∂ 
∂t 

φi = − ℏ
2 

2μ' ∇2 φi + V φi , with Ω =
(

φ1 

φ2

)
, i = 1, 2. (G.25) 

Note that in the non-relativistic limit, E' −V << mc2, the complementary GP equa-
tion formally coincides with the Schrödinger equation corresponding to a particle 
with negative mass. Like the GP equation, the complementary GP equation is 
nonlinear because μ' depends on E'. Again, if  φ1 and φ2 are distinct solutions of 
Eq. (G.25), with E' = E'

1 and E' = E'
2, then the effective mass of the relativistic 

quantum particle is different in these certain quantum states (Eq. G.7). Therefore, φ1 

satisfies the following equation:
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iℏ
∂ 
∂t 

φ1 = − ℏ
2 

2μ'
1 

∇2 φ1 + V φ1. (G.26) 

While φ2 satisfies a different equation: 

iℏ
∂ 
∂t 

φ2 = − ℏ
2 

2μ'
2 

d2 

dx2 
φ2 + V φ2. (G.27) 

However, in general, a linear combination of these two solutions: 

φ = aφ1 + bφ2. (G.28) 

It is a solution of neither Eq. (G.26) nor (G.27), and it is also not a solution of Eq. 
(G.24). Consequently, if the spinors Ω1 and Ω2 are distinct solutions of Eq. (G.24), 
with E' = E'

1 and E' = E'
2, then:

Ω = aΩ1 + bΩ2. (G.29) 

In general, it is not a solution of Eq. (G.24). Nevertheless, we can utilize Eq. (A.17) 
for constructing the Dirac wavefunction (ΨD'1) given by Eq. (A.11) that corresponds 
to the total energy of the particle ET = E'

1 − mc2. If the second spinor forming the 
bi-spinor ΨD1 is the following solution of Eq. (G.24):

Ω1 = χ1e
− i

ℏ
E '
1t . (G.30) 

Then, the first spinor is:

Ψ1 = ϕ1e
− i

ℏ
E '
1t . (G.31) 

In Eq. (G.31), the spinor ϕ1 is related to the spinor χ1 through Eq. (A.17). 
Therefore:

ΨD'1 =
(

Ψ1

Ω1

)
, corresponds to ET = E '

1 − mc2 (G.32) 

Following the same approach, we can obtain that the Dirac wavefunction that 
corresponds to Ω2 is:

ΨD'2 =
(

Ψ2

Ω2

)
, corresponds to ET = E '

2 − mc2 (G.33) 

Consequently, a linear superposition of these two Dirac wavefunctions is also a 
solution of the Dirac equation:
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ΨD' = aΨD'1 + bΨD'2 (G.34) 

Finally, a general solution of the Dirac equation can be written as a linear super-
position of all the distinct Dirac functions ΨD and ΨD' given by Eqs. (G.22) and 
(G.34), respectively. 

Annex H: The Pedagogical Value of the PPGP Equations 

Quantum mechanics is a century old discipline. Numerous amounts of wonderful 
books have been written about non-relativistic and relativistic quantum mechanics. 
Undergraduate physics, chemistry, and engineering students often receive at least 
an introductory quantum mechanics course. Commonly, introductory quantum 
mechanics courses present a comprehensive approach to non-relativistic quantum 
mechanics. However, relativistic quantum mechanics is often not included in these 
introductory courses. Currently, only some graduate students majoring in Physics and 
Mathematics receive a relativistic quantum mechanics course. This is because addi-
tional mathematical skills are required for mastering relativistic quantum mechanics. 
As a result, a relatively large group of professionals are familiar with non-relativistic 
quantum mechanics, but only a small elite of theoretical physicists have a decent 
understanding of relativistic quantum mechanics. 

This situation represents an undesirable barrier that slows the broad dissemination 
of one of the best scientific theories ever developed. For unleashing the full potential 
of relativistic quantum mechanics, it would be desirable to increase the number 
of professionals capable of understanding the fundamental ideas involved in the 
intersection of the two greatest physical theories of the Twentieth Century: relativity 
and quantum mechanics. 

In most introductory quantum mechanics courses, an immense amount of time 
is dedicated to developing the mathematical skills required to solve the Schrödinger 
equation corresponding to different physical situations. There is fortunate formal 
similitude between the Schrödinger equation: 

iℏ
∂ 
∂t 

ψ = − ℏ
2 

2m 
∇2 ψ + V ψ. (H.1) 

And the Schrödinger-like PPGP equation: 

iℏ
∂ 
∂t

Ψ = − ℏ
2 

2μ 
∇2Ψ + VΨ, with μ =

[
1 + 

E − V 
2mc2

]
m. (H.2) 

This formal similitude provides a huge pedagogical opportunity for simultane-
ously introducing the students to non-relativistic and relativistic quantum mechanics. 
This is because the same mathematical skills are needed for solving Eqs. (H.1) and 
(H.2). Moreover, the instructor could gradually introduce the students to the apparent
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simplicity of Eq. (H.2). Like m, the effective mass of the relativistic quantum particle 
(μ) is constant in problems where V is constant (Sects. 3.6, 3.7, and 5.1). In this case, 
Eq. (H.2) reduces to the Grave de Peralta (GP) equation: 

iℏ
∂ 
∂t 

ψGP  = − ℏ
2 

2μ
∇2 ψGP  + V ψGP  , with μ = 

1 + γ 
2 

m = constant. (H.3) 

In Eq. (H.3), γ is the Lorentz factor of special theory of relativity. This provides 
a direct link between non-relativistic quantum mechanics (γ = 1) and the special 
theory of relativity. The richness of Eq. (H.2) can be easily explored in physical 
situations where V is not constant. The relativistic harmonic oscillator (Sect. 4.1) 
and the “discovery” of the Klein Paradox (Sect. 4.2) are two excellent pedagogical 
examples of what brings special relativity to quantum mechanics. 

The motif (explicit or not) of a typical quantum mechanics introductory course 
could be condensed in the following phrase: there is a wave associated to any quantum 
particle and the wavefunction associated to this wave can be obtained by solving the 
Schrödinger equation. However, in relativistic quantum mechanics the wave equation 
that should be solved (for spin-(s = 0) particles) is the Klein-Gordon equation. 
Lorentz invariant (covariant) wave equations bring the existence of “exotic” states in 
relativistic quantum mechanics (see Chap. 3). We are extremely fortunate because 
of the existence of the complementary Schrödinger-like PPGP equation: 

iℏ
∂ 
∂t

Ω = − ℏ
2 

2μ' ∇2Ω + VΩ, with μ' =
[
−1 + 

E ' − V 
2mc2

]
m. (H.4) 

Also, this is formally equal to the Schrödinger equation. Therefore, new math-
ematical skills are not necessary to solve it. By solving Eq. (H.4), we can obtain 
the wavefunctions of the “exotic” states that special relativity brings to quantum 
mechanics. Moreover, Eq. (H.4) is related through Theorem III (Annex B) with the 
antiparticle’s Schrödinger-like PPGP equation: 

iℏ
∂ 
∂t

Ψa = − ℏ
2 

2μa 
∇2Ψa − VΨa, with μa =

[
1 + 

Ea + V 
2mc2

]
m. (H.5) 

This means that the existence of antiparticles, which is a theoretical predic-
tion of relativistic quantum mechanics, could be explained by exclusively utilizing 
Schrödinger-like equations. This also allows the instructor to naturally introduce the 
students to the Dirac’s Sea model and the Hole Theory (Sects. 3.3 and 4.3). 

In addition to learning how to solve the Schrödinger equation in common intro-
ductory courses of quantum mechanics, students typically learn about the existence 
of particles with spin. This is because atoms are formed by electrons, which are 
particles with spin s = 1/2. Students learn that it is not the Schrödinger equation, but 
the Pauli equation that should be solved for describing the interaction of a beam of 
electrons with an external electromagnetic field (Eq. 6.21):
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iℏ
∂ 
∂t

Ψ =
[
σ
∆

.
(
p
∆ − e c A

)]2 
2m

Ψ + VΨ, with V = eAo, and Ψ =
(

ψ1 

ψ2

)
. (H.6) 

Amazingly, we are pedagogically fortunate again because there exist a Pauli-like 
PPGP equation that in the nonrelativistic limit coincides with the Pauli equation 
(Eq. A.9): 

iℏ
∂ 
∂t

Ψ = σ
∆

.
(
p
∆ − 

e 

c 
A
)[ 1 

2μ

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
Ψ + VΨ. (H.7) 

Due to Theorem II in Annex A, for the Hydrogen atom, the energy of the stationary 
states corresponding to Eq. (H.7) are exactly the energies predicted by the Dirac 
equation (Sect. 6.5): 

En, j = mc2 /
1 + Z2α2[

n−( j+ 1 
2 )+ 

/
( j+ 1 

2 )
2−Z2α2

]2 
− mc2 , with j = 

1 

2 
, 
3 

2 
, . . . ,  n − 1/2. 

(H.8) 

A direct comparison of Eqs. (H.7) and (H.6) give the instructor a rare pedagogical 
opportunity. This is to pinpoint exactly why the Pauli equation fails us if we try to 
use it for describing the electron in the Hydrogen atom. The reason is that only if μ 
is constant, then: 

σ
∆

. p
∆
[

1 

2μ

]
σ
∆

. p
∆ =

[
σ
∆

. p
∆]2 

2μ 
= − ℏ

2 

2μ 
∇2 . (H.9) 

The series of fortunate pedagogical events does not finish here. Also, the “exotic” 
spinors Ω that correspond to the solutions of the Dirac equation (Theorem II, 
Annex A) can be obtained by solving the complementary Pauli-like PPGP equation 
(Eq. A.10): 

iℏ
∂ 
∂t

Ω = σ
∆

.
(
p
∆ − 

e 

c 
A
)[ 1 

2μ'

]
σ
∆

.
(
p
∆ − 

e 

c 
A
)
Ω + VΩ. (H.10) 

Amazingly, the values of μ and μ’ do not depend on the nature (spin value) of 
the particle: 

μ =
[
1 + 

E − V 
2mc2

]
m and μ' =

[
−1 + 

E ' − V 
2mc2

]
m. (H.11) 

The reason for this pedagogical simplicity is that, as shown in Sect. 3.1, the equa-
tion given the value of μ can be obtained without referring to quantum mechanics. 
From the simple relativity equations:
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ET = K + V + mc2 = E + mc2 , and K = (γ − 1)mc2 . (H.12) 

It follows the following useful formula for the Lorentz factor (γ): 

γ = 1 + 
E − V 
mc2 

. (H.13) 

Defining μ as: 

μ = 
(γ + 1) 

2 
m ⇒ γ = 

2μ 
m 

− 1. (H.14) 

From Eqs. (H.13) and (H.14), it follows the given formula for μ given by Eq. 
(H.11). To obtain the formula for μ' given by Eq. (H.11), in addition to relativity, we 
only need the Hole Theory, which is a pure relativistic quantum mechanics model that 
is valid for any relativistic quantum particle. The antiparticle has the same mass but 
opposite electrical charge than the particle. However, the antiparticle is just another 
particle. Therefore, if the antiparticle interacts with the same external world than the 
corresponding particle, then Eq. (H.13) should be modified in the following way for 
the antiparticle: 

γa = 1 + 
Ea + V 
mc2 

. (H.15) 

The Hole Theory states that Ea = −E'. A consequence of this is that γa = −γ'
(Eq. 3.34). This is valid for any kind of particle. Therefore: 

−γ ' = 1 + 
−E ' + V 

mc2 
⇒ γ ' = −1 + 

E ' − V 
mc2 

. (H.16) 

Defining μ' as: 

μ' =
(
γ ' − 1

)
2 

m ⇒ γ ' = 
2μ'

m 
+ 1. (H.17) 

From Eqs. (G.16) and (G.17), it follows the formula for μ' given by Eq. (H.11). 

Summarizing the discussion above: 

1. In traditional introductory quantum mechanics courses, students learn how to 
solve the Schrödinger and Pauli equations. 

2. We present a pedagogical approach for simultaneously teaching nonrelativistic 
and relativistic quantum mechanics in this book. The approach presented 
only requires solving Schrödinger-like and Pauli-like equations. The approach 
presented is then compatible with the approach often used for teaching nonrela-
tivistic quantum mechanics.
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3. Formally, there is a fundamental difference between the Schrödinger and Pauli 
equations and the corresponding Schrödinger-like and Pauli-like PPGP equa-
tions. This is because m is a constant in the Schrödinger and Pauli equations, 
but μ and μ' are local functions on the position of the particle. This difference 
captures most of the consequences that special theory of relativity brings to 
quantum mechanics. The simplicity of the differences provides a pedagogical 
opportunity for simultaneously teaching nonrelativistic and relativistic quantum 
mechanics. 

This book is an example of how we could simultaneously teach and learn nonrel-
ativistic and relativistic quantum mechanics in an introductory quantum mechanics 
course. The authors of this book wish and expect that future books based on similar 
approaches could be even better. 

Annex I: The Heuristic Value of the PPGP Equations 

There is latent tension between Physics and Mathematics. While mathematics is the 
language of physics, physics is not necessarily mathematics. There is some verity in 
the phrase “if you cannot explain a physical idea in Layman Terms, you still do not 
understand it”. An inadequate amount of mathematics may result in an imprecise 
physical theory, but an excessive amount of mathematics may result in a physical 
theory that is unintelligible for many. 

Nonrelativistic quantum mechanics may be a physical theory with too much math-
ematics for a multitude of people. However, a century’s worth of teaching experience 
resulted in clever ways of disseminating the fundamental physical ideas included in 
it. 

• What is quantum mechanics?—An amateur could ask 

Today, most physicists, chemists, and many engineers could answer in a comprehen-
sible way to the amateur: 

• There are not any waves associated with a classical particle, but there is a wave 
associated with every quantum particle. Quantum mechanics is the physical theory 
that indicates how to calculate the wavefunction that describes how that wave 
behaves. Wavefunctions are solutions of wave equations. Specific mathematical 
skills are needed for solving wave equations. If you are interested, there are many 
pedagogical quantum mechanics books that are available to learn from. 

• What is this thing entitling relativistic quantum mechanics? A nonprofessional 
could also ask. 

• Well… you probably could not handle my answer! An arrogant and discourteous 
expert in quantum electrodynamics may say. 

However, a reader of this book may answer something like this:
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• As I told you before, there are no waves associated with a classical particle. 
However, I should apologize to you for my previous response. 

• I should have said that, in the nonrelativistic quantum mechanics theory, there 
is a wave associated with a quantum particle. However, nonrelativistic quantum 
mechanics is only an approximated theory. This is because it is only valid if the 
energy of the particle is very small. 

• Relativistic quantum mechanics is the precise theory where it is valid for any 
particle energy. To be precise, there are two waves associated with a single 
quantum particle. Relativistic quantum mechanics is the physical theory that indi-
cates how to calculate the wavefunctions that describes how both waves behave. 
Wavefunctions are solutions of wave equations. A few mathematical skills are 
necessary for solving wave equations. If you are interested, I know of a pedagog-
ical book that allows you to simultaneously learn relativistic and non-relativistic 
quantum mechanics. 

This hypothetical dialog illustrates the heuristic value of the pedagogical approach 
in which this book is based. A simpler, but still precise, theoretical approach may 
facilitate thinking about the physical meaning of the mathematics involved in it. 
Moreover, it may facilitate thinking about possible consequences of the theory. 

Excessive care about mathematical subtleties may impede non-specialists from 
adventuring in advanced mathematical physical theories. For instance, Dirac, a math-
ematical genius, did not vacillate successfully using the so-called “Delta of Dirac 
function”. We know today that it is not strictly a function, but instead another math-
ematical object. The renormalization procedure in modern quantum field theories is 
another example of this kind. 

In Chap. 8, several heuristic discussions are presented. They explore some hypo-
thetical but far-reaching consequences due to the introduction of a special theory of 
relativity in quantum mechanics. 

The simplest model of a relativistic electron in a heavy Hydrogen-like atom is 
a (s = 0)-particle trapped in a one-dimensional infinite well (Sect. 3.6). Clearly, 
this is not an extremely precise model. The spin of the electron is not 0 but 1/2. 
The interaction between the electron and the nucleus of the Hydrogen-like atom is 
Coulombic. Nevertheless, this simple model captures some fundamental properties 
of the electron in the Hydrogen-like atom: the atom is stable because the electron 
has a minimum possible energy value different than zero, and there is a discrete set 
of possible stationary quantum states. 

As discussed in Sect. 3.6, this simple model implies that we should solve the 
following Schrödinger-like PPGP equation (Eq. H.2): 

iℏ
∂ 
∂t

Ψ = − ℏ
2 

2μ 
∇2Ψ + VΨ, with μ =

[
1 + 

E − V 
2mc2

]
m. (I.1) 

Although the simplicity of this equation is misleading, there are explanations for it. 
As discussed in Sects. 4.2 and 4.3, μ is not constant and it is negative outside the well. 
This means that the exact mathematical model includes solving the corresponding



166 Annexes

complementary Schrödinger-like PPGP equation and considering the Klein paradox. 
However, we are interested in a simple theory that captures the essence of this simple 
model. With this goal in sight, it was supposed in Sect. (3.6) that Ψ = 0 outside of 
the well. This implies simplifying the equation to be solved from Eq. (I.1) to solving 
inside of the well the GP equation for a free particle: 

iℏ
∂ 
∂t 

ψGP  = − ℏ
2 

(γ + 1)m 
∇2 ψGP  , with γ =

[
1 + 

E 

mc2

]
. (I.2) 

The energies of the stationary states of Eq. (I.2) are (Eq. 3.81): 

E (rel) 
n = ℏ

2π 2n2 

(1 + γ )mL2 
, with γ =

/
1 + 

n2 

4

(
λC 

L

)2 

, and λC = 
h 

mc 
. (I.3) 

In the non-relativistic limit (γ = 1), Eq. (I.3) reduces to: 

E (rel) 
n = ℏ

2π 2n2 

2mL2 
. (I.4) 

The energy of the particle inside of the well is purely kinetic (V = 0). Therefore, 
we obtain using this simple model that the kinetic energy of an electron in the ground 
state of a Hydrogen-like atom is approximately: 

K (rel) n=1 ≈ ℏ
2 

(1 + γ )mr2 
, with γ =

/
1 + 

n2 

4

(
λC 

L

)2 

, and λC = 
h 

mc 
. (I.5) 

We could use the nonrelativistic limit of Eq. (I.5) for the Hydrogen atom: 

Kn=1 ≈ ℏ
2 

2mr2 
. (I.6) 

These results are simple enough to use them in some heuristic discussions. For 
instance, in Sect. 8.1, Eq.  (I.6) was used for making a crude estimate of the size 
of the Hydrogen atom. The basic idea is that the total energy of the electron in the 
Hydrogen atom should be equal to the sum of its nonrelativistic kinetic and potential 
energy (Eq. 8.1): 

E(r ) ≈ ℏ
2 

2mer2 
− e2 

4π∊0r 
. (I.7) 

We should note that Eq. (I.7) is a heuristically built function. It is not a wave equa-
tion. Nevertheless, it allows us to grasp how big a Hydrogen atom is. The heuristic 
argument is that the function E(r) should have a local extremum when r equals the 
radius of the Hydrogen atom. Interestingly, this value turns to be the Bohr radius
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(Eq. 8.2): 

r = rB = 
4π∊0ℏ

2 

mee2 
= 

1 

α 
λC , with λC = ℏ

mec 
(I.8) 

This coincidence suggests that our heuristic considerations can be trusted even if 
they are not exact. The heuristic approach is highly advantageous from the mathe-
matical point of view. This is because the mathematical skills required for finding 
local extrema of a function are of lower level, if compared to the skills required for 
solving an equation with partial derivatives (a PPGP equation). In Sect. 7.2, Eq.  (7.24) 
is successfully utilized for predicting the Chandrasekhar mass limit from Heuristic 
considerations. This further supports our heuristic considerations. We could then try 
to predict the size of heavy Hydrogen-like atoms in this way. We should start by 
substituting Eq. (I.7) by Eq.  (8.3): 

E(r ) ≈ ℏ
2 

(γ + 1)mer2 
− 

Ze2 

4π∊0r 
. (I.9) 

The heuristic argument is now that the function E(r) should have a local extremum 
when r equals the radius of the heavy Hydrogen-like atom. We easily find that E(r) 
has a local minimum when: 

r = rZ = a 

/
1 −

(
λC 

a

)2 

, with a = 
rB 
Z 

(I.10) 

As shown in Fig. 8.1, the size of the Hydrogen-like atom becomes undefined when 
Z > 1/α ≈ 137. This could be interpreted as a prediction about the impossibility of 
the natural existence of elements with Z > 137. Interestingly, an element with Z > 
118 has never been discovered. All the heuristic predictions above are confirmed by 
experimental observations. Moreover, they make a lot of sense from the theoretical 
point of view. 

We then reach a point where we could adventure ourselves to explore some 
possible far-reaching consequences of relativistic quantum mechanics. We should 
look for ideas that are controversial due to the mathematical complexity of “tradi-
tional” relativistic quantum mechanics. We may hope that the simplicity of the PPGP 
equations could bring some light to current controversial topics. 

One of these controversial topics is the possible existence of a clear frontier 
between the quantum world and the classical world. Currently, many quantum 
mechanics experts believe that everything from a quark to the whole universe is 
quantum. Classical mechanics would then only be an approximate theory. The 
exact theory is relativistic quantum mechanics. Other physicists (experts included) 
argue that Newtonian mechanics can be successfully used for designing mechanical 
machines. This is because the macroscopic objects that surround us are as classical as 
they seem to be. For them, Schrödinger’s cat does not exist because cats are classical
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living beings. Nobody has ever seen a cat that is simultaneously dead and alive. The 
general population would most likely agree with this opinion. 

Interestingly, based on the relative simplicity of the PPGP equations, we could 
possibly give a heuristic answer to the question about the existence of a clear fron-
tier between the quantum and the classical world. If possible, we should not wish 
to contradict known results of relativistic quantum mechanics since it is a very 
successful theory. Moreover, quantum electrodynamics was the first modern quantum 
field theory ever developed. Other quantum field theories forming the current Stan-
dard Model of particle physics were developed following the theory of quantum 
electrodynamics. Therefore, it is very difficult to contradict the more precise phys-
ical theory ever developed, as the experts in the field commonly say. If possible, we 
should consider looking for something external to “traditional” relativistic quantum 
mechanics. 

We notice that an attractive interaction (proportional to 1/r2) between a quantum 
particle and the external world tends to spatially localize the wavefunction (scalar or 
spinor) Ψ. For instance, this happens in Hydrogen-like atoms. As discussed above, 
if this interaction is too strong, it can produce the collapse of Ψ to a point (Eq. I.10). 
Neither gravity nor a possible interaction of a quantum particle with itself are included 
in relativistic quantum mechanics. Therefore, a combination of these two actors may 
result in the existence of a clear frontier between the quantum and the classical world. 

It is a straightforward extension of previous heuristic arguments to guess that a 
quantum particle could interact gravitationally with itself. As discussed in Sect. 8.2, 
if this could occur, then we could approximately capture the consequences of this by 
modifying Eq. (I.9) in the following way: 

E(r) ≈ ℏ
2 

2μr2 
− 

Gm2 

r 
, with μ = 

(γ + 1) 
2 

m > 0. (I.11) 

Now, the heuristic argument would be that the function E(r) may contain a local 
extremum. This would correspond to a value of r = rm, which refers to the “size” 
of the wavefunction Ψ that is associated to a free quantum particle. The charge of 
the particle is not present in Eq. (I.10). The antiparticle is just another particle with 
the same mass but contains the opposite electric charge of the particle. Therefore, 
Eq. (I.10) should also be valid for antiparticles. As shown in Fig. 8.2, rm > 0 for  
any finite value of m in the nonrelativistic limit (γ = 1). However, rm → 0 if  m = 
mP (Planck mass), when the effects produced by the introduction of special theory 
of relativity in quantum mechanics are considered (γ >> 1). We could interpret the 
collapse of Ψ to a point as a transition from quantum to classical. The “dressed” 
quantum particle get “naked” when m > mP ≈ 22 μg. “Naked” particles with no 
wave associated to it should be classical particles. This is a surprise since it looks 
like an extended version of relativistic quantum mechanics agrees with the amateur 
opinion about the Schrödinger cat. 

Moreover, we also notice that a repulsive interaction (proportional to 1/r2) between 
a quantum particle and the external world tends to spatially localize the “exotic” 
wavefunction (scalar or spinor)Ω. For instance, as discussed in Sect. 8.3, this happens



Annexes 169

when a positron interacts with the nucleus of a Hydrogen-like atom (Fig. 8.5a). A 
possible Coulombic interaction of a particle, or antiparticle, with itself is not included 
in relativistic quantum mechanics. We could then wonder what the consequences 
would be if we consider an extended version of relativistic quantum mechanics 
where a charged particle or antiparticle could electrically repel itself. 

Let us start considering antiparticles. Could this extended relativistic quantum 
mechanics theory explain a big mystery? Nonprofessionals do not care for antimatter 
since we are surrounded by matter. However, physicists care about the existence of 
antimatter. The existence of antimatter is a consequence of including relativity in 
quantum mechanics. Moreover, the Standard Model of particle physics predicts that 
we should be equally surrounded by matter and antimatter, but we are not surrounded 
by antimatter. 

If an antiparticle with electric charge q could experience an internal Coulomb 
repulsion, as discussed in Sect. 8.3, we could heuristically argue that we could approx-
imately capture the consequences of this assumption by modifying Eq. (I.11) in the  
following way: 

E '
a(r ) ≈

ℏ
2 

2μ'
ar

2 
+ 

Zq2 

4π∊0r 
= − ℏ

2 

2μr2 
+ 

Zq2 

4π∊0r 
. (I.12) 

As discussed in Annex E (Fig. E.2), Eq. (I.12) assumes that, if the self-interacting 
antiparticle is in the “exotic” quantum state that corresponds to Ωa, then its energy 
is E'

a, its kinetical energy is negative, and its internal potential energy is positive. 
Now, the heuristic argument would be that the function E'

a(r) may have a local 
extremum. This would correspond to a value of r = rq, which refers to the “size” of 
the wavefunction Ωa that is associated to a free quantum antiparticle. As shown in 
Fig. 8.7, rq → 0 if |q| = qP (Planck charge). We could interpret the collapse of Ωa to 
a point as a transition from quantum to classical. The “dressed” quantum antiparticle 
get “naked” when |q| >  qP ≈ 11 e. “Naked” antiparticles with no waves associated 
to them should be classical antiparticles. 

This is a surprising result because from it, we could explain why antimatter does 
not surround us. Relativistic quantum mechanics explains the stability of antimatter 
atoms by the assumption of two waves associated with the cloud of Z positrons 
forming it. However, the extended version of quantum mechanics that we are consid-
ering, where a charged antiparticle repels itself, predicts that a cloud of more than 
11 positrons should be classical. This is because Ωa collapses to a point in this case. 
Therefore, no antimatter atoms with Z > 11 should exist. This heuristic prediction 
coincides with the physical reality that surrounds us. 

However, we are surrounded by matter. This implies that Eq. (I.12) should not 
be valid for matter particles. We are heuristically constructing an extended version 
of relativistic quantum mechanics. This extended theory should explain the world 
as we see it. Therefore, in this extended theory, a charged particle should interact 
with itself in a different way than a charged antiparticle does. For instance, we could 
propose that for particles, Eq. (I.12) should be replaced by:
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E '(r ) ≈ − ℏ
2 

2μr2 
− 

Ze2 

4π∊0r 
. (I.13) 

Clearly, E'(r) does not have a local extremum. Consequently, the particle in 
“exotic” quantum states, associated to Ω, never collapses to a point. This means 
that free quantum particles can have any charge. This is why we are surrounded by 
matter but not by antimatter. 

In summary, the relative simplicity of the PPGP equations facilitates the use 
of some interesting heuristic semiquantitative arguments. The heuristic discussions 
above allowed the filling of some notable holes in the existing quantum mechanics 
theory. Nevertheless, as we stated at the beginning of this Annex, there is latent 
tension between Physics and Mathematics. While mathematics is the language of 
physics, physics is not mathematics. An immense amount of mathematics may result 
in a physical theory that is unintelligible for many. However, an inadequate amount of 
mathematics may result in an imprecise physical theory. This means that the heuristic 
finding presented above should be received with both justified enthusiasm and skep-
ticism. This is how science progresses from enthusiastic skepticism to careful proof 
or disproof of unique hypothetical theories.
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