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Using a Schrödinger-like equation, which describes a particle with mass and 

spin-0 and with the correct relativistic relation between its linear momentum 

and kinetic energy, the basic equations of the non-relativistic quantum me-

chanics with trajectories and quantum hydrodynamics are extended to the rel-

ativistic domain. Some simple but instructive free particle examples are dis-

cussed.    
 

I. INTRODUCTION 

In 1927, shortly after E. Schrödinger pub-

lished a seminal paper containing his cele-

brated equation [1], E. Madelung dared an in-

terpretation showing that the Schrödinger 

equation can be transformed into two equa-

tions that mimic the continuity and the Euler 

equations of hydrodynamics [2]. The Euler 

equation is a particular case of the Navier-

Stokes equation [3]. Such hydrodynamic in-

terpretation is now considered a forebear of 

the de Broglie-Bohm Pilot Wave Theory [4-

7], although germs of this theory were ven-

tured in 1924 by L. de Broglie [8]. The pro-

cess followed by Madelung consisted in ex-

pressing the Schrödinger solution in an expo-

nential form which led to the two abovemen-

tioned equations, one for the amplitude and 

another for the phase. Those ideas were later 

retaken by D. Bohm [4-5]. Consequently, 

must of the work related to the Madelung-de-

Broglie-Bohm reformulation of quantum 

mechanics and quantum hydrodynamics ap-

plies to particles moving slowly respect to 

the speed of light. A fully relativistic quan-

tum mechanics with trajectories was recently 

formulated [9]; however, it lacks the relative 

simplicity of the non-relativistic formulation. 

In this work, we explore an alternative ap-

proach for extending, to the relativistic do-

main, the known non-relativistic quantum 

hydrodynamics and quantum theories with 

trajectories. Our approach is based in a sur-

prising wave equation which resembles the 

Schrödinger equation, but describes a parti-

cle with mass and spin-0 which has the cor-

rect relativistic relation between the linear 

momentum and the kinetic energy [10-14]: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

(𝛾v+1)𝑚

𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡).    (1) 

In Eq. (1), which is the GdeP equation for 

a free particle with mass m, ℏ is the Plank 

constant (h) divided by 2π, and γv is a factor 

commonly found in special theory of relativ-

ity formulas (the Lorentz factor), which de-

pends on the ratio between the squares of the 

particle’s speed (v2) and the speed of the light 

in the vacuum (c2) [15]: 

 𝛾v =
1

√1−
v2

𝑐2

 .      (2) 

The striking similarity between Eq. (1) and 

the Schrödinger equation allowed us to ex-

tend, to the relativistic domain, the basic 

equations of the Madelung-de-Broglie-

Bohm reformulation of quantum mechanics 
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and quantum hydrodynamics. We hope that 

the scientific community, which is currently 

working on non-relativistic quantum me-

chanics theories with trajectories and quan-

tum hydrodynamics, will recognize the sim-

plicity of the theory presented in this work, 

and its potential for practical applications in 

relativistic quantum simulations. The rest of 

this work is organized in the following way. 

In Section II, a relativistic extension of the de 

Broglie-Bohm quantum mechanics is ob-

tained from the relativistic but Schrödinger-

like GdeP equation. In Sections III, a relativ-

istic extension of the Madelung quantum 

electrodynamics is presented. In Sections IV 

to VII four free particle examples increasing 

in order of complexity are discussed. Finally, 

the conclusions of this work are given in Sec-

tion VIII.   

II. MADELUNG-BOHM-LIKE 

REFORMULATION OF THE GDEP 

EQUATION 

The three-dimensional (3D) GdeP equation 

for a particle moving at relativistic speeds in 

a potential V is given by the following expres-

sion [12-14]: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓 = −

ℏ2

(𝛾v+1)𝑚
𝛻2𝜓 + 𝑉𝜓  .   (3) 

In general, the wavefunction (ψ), the poten-

tial, and γv all depend on the three spatial co-

ordinates and the time. Due to the formal sim-

ilarity between Eq. (3) and the Schrödinger 

equation, a Madelung-Bohm-like extension 

of Eq. (3) can be done following the same 

procedure commonly used for reformulating 

the Schrödinger equation [2, 4-7]. First, we 

look for a solution of the GdeP equation of 

the following form: 

 𝜓(𝑟, 𝑡) = 𝑅(𝑟, 𝑡)𝑒𝑖𝑆(𝑟,𝑡)/ℏ .     (4) 

In Eq. (4), R and S are the amplitude and 

phase fields, respectively [2, 4-7]. Inserting 

Eq [4] in Eq. (3) and following step by step 

Ref. [6], we can obtain the following equa-

tions, which extend to the relativistic domain 

the basic equations of the Madelung-de Brog-

lie-Bohm quantum mechanics [6]:  

𝜕

𝜕𝑡
𝑆 + 

∇𝑆2

(𝛾v+1)𝑚
 +  [𝑉 + 𝑄] = 0,   𝑄 =

 −
ℏ2

(𝛾v+1)𝑚
 
𝛻2𝑅

𝑅
.        (5) 

 
𝜕

𝜕𝑡
𝑅2 +

2

(𝛾v+1)
∇. [𝛾v𝑅

2 (
∇𝑆

𝛾v𝑚
)] = 0 .   (6) 

In Eq (5), Q is the quantum potential [6]. 

Clearly, γv ≈ 1 when v2 << c2; therefore, as it 

should be expected when the particle moves 

at low speeds, Eq. (5) and (6) coincide to the 

well-known equations of the Madelung-de 

Broglie-Bohm quantum mechanics [6]. At 

relativistic velocities, the velocity field 

should now be defined such that the relation 

between the velocity and the linear momen-

tum (𝛻S) is the correct relativistic relation-

ship [15]: 

𝛾vv⃗ =   
∇𝑆

𝑚
  ⇒  v⃗ =  

1

𝛾v
 
∇𝑆

𝑚
      (7) 

Thus, the expression between parentheses 

in Eq. (6) is the velocity field given by Eq. (7). 

Again, when v2 << c2, Eq. (7) coincides with 

the non-relativistic equation [6]. However, in 

general: 

 v =
𝑐

√(𝑚𝑐)2+∇𝑆2
 ∇𝑆  ⇒  𝛾

v
=

√(𝑚𝑐)2+∇𝑆2

𝑚𝑐
 (8) 

Therefore, when ψ is known, Eq. (8) deter-

mines the velocity field and γv. The velocity 

is then locally proportional to ∇S and its di-

rection is perpendicular to the surfaces of 

constant phase (S = constant). Bohm intro-

duced a particle’s trajectory as the solution of 

the following differential equation and initial 

conditions [4-7]:  

𝜕

𝜕𝑡
𝑟 𝑝(𝑡) = v⃗ (𝑟 =𝑟 𝑝(𝑡) , t) , 𝑟 𝑝(𝑡 = 0) =  𝑟 𝑜.  (9) 

Therefore, different trajectories correspond 

to different initial positions of the particle. 

The direction of the particle’s velocity is 



always tangent to the particle’s trajectory. 

The particle’s velocity is given by the follow-

ing equation: 

v⃗ 𝑝(t) = 
𝜕

𝜕𝑡
𝑟 𝑝(𝑡) .        (10) 

Equations (9) and (10) related the velocity 

of the Bohmian particle with the velocity of 

the Madelung’s fluid. 

III. RELATIVISTIC QUANTUM 

HYDRODYNAMICS 

Madelung did not introduce particle trajec-

tories in his reformulation of the Schrödinger 

equation [2]. This was done later by Bohm [4-

5]. Madelung interpreted Eqs. (5) and (6) as 

describing a fluid with density ρ’ = mρ such 

that: 

𝜌(𝑟, 𝑡) =  𝑅2(𝑟, 𝑡) .     (11) 

Then using Eq. (7) with γv = 1 allowed him 

to directly rewrite Eq. (6) with γv = 1 as a con-

tinuity equation [2, 6-7]. Proceeding in a sim-

ilar way, we obtained the following extension 

of the Madelung’s continuity equation to the 

relativistic domain: 

𝜕

𝜕𝑡
𝜌 +  

2

(𝛾v+1)
∇. [ 𝜌 (𝛾v v⃗ )] = 0 .    (12) 

As it should be expected, at non-relativistic 

speeds, when γv ≈ 1 because v2 << c2, Eq. (12) 

coincides with the Madelung’s continuity 

equation [2, 6-7]. Eqs. (12) was obtained 

from Eq. (6) by identifying mρ with the den-

sity of a fluid extending through space. Like-

wise, as it was done by Madelung [2, 6-7], by 

identifying the velocity field of this fluid 

with the velocity field given by Eq. (7), we 

can obtain from Eq. (5) the following equa-

tion: 

𝜕

𝜕𝑡
(𝛾vv⃗ ) + ∇ [

𝛾v
2

(𝛾v + 1)
v⃗ .v⃗ ] + 

∇ (𝑉 + 𝑄)

𝑚
= 0 ,  

𝑄 =  −
ℏ2

(𝛾v+1)𝑚
 
𝛻2√𝜌

√𝜌
 .     (13) 

If v and thus γv only depend on time but not 

on position, Eq. (15) can be simplified in the 

following Euler-like equation: 

𝜕

𝜕𝑡
(𝛾vv⃗ ) +

2

(𝛾v+1)
[(𝛾vv⃗ ). 𝛻(𝛾vv⃗ )] =  −

𝛻 (𝑉+𝑄)

𝑚
  (14) 

As it should be expected, at non-relativistic 

speeds, when γv ≈ 1, Eq. (16) coincides with 

the Euler-like equation obtained by Made-

lung [2, 6-7].    

IV. EXAMPLE 1: PLANE WAVES 

The fluid dynamic of a classical ideal fluid 

flow supposes the fluid is non-viscous; the 

flow is steady, i.e., the velocity is time inde-

pendent; the fluid is incompressible, i. e., the 

liquid density is constant; and also assumes 

that the flow is irrotational [16]. The dy-

namic of an ideal fluid with density ρ’, which 

is flowing close to the Earth’s surface under 

the influence of the Earth gravitational po-

tential, Ug/m = gH, where g is the gravita-

tional acceleration and H is the high respect 

to the ocean’s surface, is given by the Ber-

noulli equation [16]: 

1

2
ρ'v2 + ρ'

𝑈𝑔

𝑚
+ 𝑃 = constant .     (15) 

In Eq. (15), P is the pressure inside of the 

liquid. It is instructive to compare the Made-

lung liquid, associate to a free particle 

“guided” by a plane wave, to a classical ideal 

liquid under non-gravity conditions, which 

dynamics is described by the Bernoulli equa-

tion with Ug = 0. A simple solution of the 

GdeP equation for a free particle (Eq. (1)) is 

the plane wave, normalized in a large cube of 

side L, given by the following equation [11-

12]:     

𝜓 =    
1

√𝐿3
 𝑒

𝑖

ℏ
(𝑝  . 𝑟⃗⃗  −  

𝑝2

(𝛾v+1)𝑚
 𝑡) 

 .          (16) 

In Eq. (16), p is the magnitude of the parti-

cle’s linear momentum, which can take any 

positive real value. Evaluating Eq. (16) for γv 



 

 
 

= 1 gives the correct normalized plane wave 

when the free particle is traveling at non-rel-

ativistic speeds [6]. The surfaces of constant 

phase corresponding to Eq. (16) are planes 

perpendicular to the particle’s linear momen-

tum. Note that for a given value of p, the 

value of γv get univocally determined by the 

equality of the following formulas for the rel-

ativistic kinetic energy [11-12, 15]: 

𝐾 = (𝛾v − 1)𝑚𝑐2 = 
𝑝2

(𝛾v+1)𝑚
 ⇒  𝛾v =

√𝑝2+𝑚2𝑐2

𝑚𝑐
 .   

           (17) 

Using Eqs. (4), (11) and (16), we can obtain:   

 𝑅 = √𝜌 = 𝐿−
3

2  ⇒  𝑄 ≡ 0,    

              𝑆(𝑟, 𝑡) =  (𝑝  .  𝑟⃗⃗  −   
𝑝2

(𝛾v+1)𝑚
 𝑡)      (18) 

From Eq. (18) follows that the Madelung 

fluid associated to a free particle guided by a 

plane wave has constant density ρ’ = mρ; 

therefore, it is incompressible. It is also non-

viscous because the total force acting on it is 

F = - 𝛻(V+Q)/m = 0. The velocity of this 

fluid and the corresponding value of γv can 

be obtained using Eqs. (8) and (18):     

v⃗ =  
𝑐

√(𝑚𝑐)2+𝑝2
 𝑝   , 𝛾v =

√(𝑚𝑐)2+𝑝2

𝑚𝑐
 .  (19) 

The value of γv given by Eqs. (17) and (19) 

are identical in this case, but as it will be 

shown in the next Section, this is not a gen-

eral feature of the theory. The maximum pos-

sible value of the fluid speed, v ≈ c, occurs 

when ∇S = p >> mc. This corresponds to  

γv >> 1. The fluid velocity is constant; thus, 

this Madelung fluid is irrotational. Eq. (14) 

reduces now to:    

 𝛻 [
(𝛾vv)

2

(𝛾v + 1)
] =

𝛻[
𝑝2

(𝛾v +1)𝑚
]

𝑚
= 0  ⇒ 𝐾 = constant  .  

         (20) 

Evidently, Eqs. (19) and (20) also gives the 

correct results at the non-relativistic limit. A 

comparison between Eq. (20), evaluated for 

γv = 1, and the Bernoulli equation (Eq. (15) 

with Ug = 0) shows that there is not pressure 

in the Madelung fluid associated to a free 

quantum particle guided by a plane wave. 

From Eqs. (9), (10), and (19) follow that the 

Bohmian paths of a free quantum particle as-

sociated to a plane wave are given by the fol-

lowing equation [6]: 

𝑟 𝑝(𝑡) =  𝑟 𝑜 +
𝑐

√(𝑚𝑐)2+𝑝2
 𝑝  𝑡.      (21) 

Evidently, Eq. (21) also gives the correct 

result for a particle moving at non-relativistic 

speeds. In Eq. (21), the initial position of the 

particle lies everywhere in space. Like for 

free classical particles moving at non-relativ-

istic speeds, these Bohmian paths are there-

fore uniform, rectilinear, and perpendicular 

to the planes of constant phase of the wave. 

This is because in this case the quantum po-

tential is null, thus 𝛻Q = 0 [6]. Also note that 

Eqs. (12) to (14) are fulfilled because both ρ 

and v are constant.  

V. EXAMPLE 2: STANDING WAVES 

A simple but interesting case, where Q is 

not null, occurs when a free quantum particle 

is in the superposition state formed by two 

plane waves, which are both solutions of Eq. 

(1) but are traveling in opposite directions 

along the x-axis with the same value of p: 

𝜓(𝑥, 𝑡) =   
1

√2𝐿3
[𝑒𝑖(𝑘𝑥 − 𝑤𝑘 𝑡) + 𝑒𝑖(−𝑘𝑥 − 𝑤𝑘 𝑡) ] =

 
2

√2𝐿3
cos(𝑘𝑥)𝑒−𝑖𝑤𝑘 𝑡 ,  𝑘 =  

𝑝

ℏ
 , 𝑤𝑘 = 

𝑝2

(𝛾v+1)𝑚ℏ
 . 

         (22) 

The speeds of the Madelung fluids associ-

ated to either one of these two plane waves 

are the same and given by Eq. (19), but the 

corresponding velocities point to opposite di-

rections; therefore, γv is also the same for 

each wave when individually considered. 

Consequently, the standing wave given by 

Eq. (22) is also a solution of Eq. (1) with the 



same value of γv than for each of the plane 

waves components. For the standing wave: 

𝑅(𝑥) = √𝜌(𝑥) =
2

√2𝐿3
cos(𝑘𝑥)  ⇒ 

 𝑄 = −
ℏ2

(𝛾v + 1)𝑚
 

𝑑2

𝑑𝑥2 𝑅(𝑥)

𝑅(𝑥)
=

ℏ2𝑘2

(𝛾v + 1)𝑚
 

           =
𝑝2

(𝛾v+1)𝑚
 ,   𝑆(𝑡) = −

𝑝2

(𝛾v+1)𝑚
 𝑡 .   (23) 

From Eqs. (22) and (23) follows that the 

period of the cos2(kx) density distribution is 

inverse proportional to p. The Madelung 

fluid associated to a free particle      

guided by a standing wave does not have a 

constant density; therefore, it is compressi-

ble, thus, it does not behave like a classical 

ideal fluid flow. The wavelength of the 

standing wave, λ, is inverse proportional to 

p. From Eq. (23) also follows that ∇S = 0; 

therefore, from Eq. (8) follows that the ve-

locity of this fluid is zero and γv = 1, which 

is different than the γv value corresponding 

to each superposing plane wave.  Conse-

quently, the Bohmian particle associated to a 

standing wave is at rest. In Eq. (23), Q is 

equal to the relativistic kinetic energy of the 

free particle, which is constant; therefore, ∇Q 

= 0, thus this Madelung fluid is non-viscous. 
Eqs. (12) to (14) are now fulfilled because ρ 

does not depend on time and v = 0. A com-

parison of the results obtained in this exam-

ple for a standing wave, to the results ob-

tained in the previous Section for a plane 

wave, illustrates the well-known nonlocality 

properties of the theories resulting from the 

Madelung-de-Broglie-Bohm reformulation 

of the Schrödinger equation. The superposi-

tion of plane waves, which are solutions of 

the same GdeP equation for a free particle, 

modifies the properties of the corresponding 

Madelung fluid, and then the Bohmian tra-

jectories of the guided particle.  

VI. EXAMPLE 3: QUASI-STANDING 

WAVES   

In this Section we will consider a wave-

function of Eq. (1), which is a slightly varia-

tion of Eq. (22): 

𝜓(𝑥, 𝑡) =   
1

√2𝐿3
[𝑒𝑖(𝑘𝑥 − 𝑤𝑘 𝑡) +  𝑒𝑖(−𝑘′𝑥 − 𝑤

𝑘′ 
𝑡) ] ,

𝑘′ = 
𝑝+∆𝑝

ℏ
 , 𝑤𝑘′ = 

(𝑝+∆𝑝)2

(𝛾v+1)𝑚ℏ
 , ∆𝑝 ≪ 𝑝 .  (24) 

In Eq. (24), k and wk are given by Eq. (22). 

Consequently, the first term of the wavefunc-

tion in Eq. (24) is a solution of Eq. (1). How-

ever, the second term is not because there is, 

in the denominator of wk’, the same value of 

γv than for wk. From Eq. (17) follows that the 

value of γv corresponding to (p + Δp) is ap-

proximately equal to the value corresponding 

to p in two situations. First, γv ≈ 1 at the non-

relativistic limit when p << mc. Second, γv ≈ 

p/mc at the ultra-relativistic limit p >> mc; 

therefore, (p + Δp)/mc ≈ p/mc when Δp << 

mc. Consequently, at these two limits the 

second term of Eq. (26) is approximately a 

solution of Eq. (1). We will call here, a quasi-

standing wave, to the wavefunction given by 

Eq. (6) at these two limits. After some 

straightforward algebraic steps for trans-

forming Eq. (26) in a form like Eq. (4), we 

obtained the following results:   

∇S =  
−∆𝑝

2
 �̂�  ⇒  v =  

−𝑐 ∆𝑝

√4𝑚2𝑐2+(∆𝑝)2
  ⇒ 𝛾v =

 
1

√1−
(∆𝑝)2

4𝑚2𝑐2 + (∆𝑝)2

  .      (25) 

 

 𝜌(𝑥, 𝑡) =
2

𝐿3 𝑐𝑜𝑠2[𝑘𝑞(𝑥 + v𝑞𝑡)],  𝑘𝑞 =
2𝑝+∆𝑝 

2ℏ
,

v𝑞 = 
∆𝑝

(𝛾v+1)𝑚
  ⇒ 𝑄 =  

(2𝑝+∆𝑝)2

4(𝛾v+1)𝑚
  .   (26) 

As it should be expected, Eqs. (25) and (26) 

reduces to Eqs. (23) when Δp = 0. The den-

sity of the Madelung fluid associated to a free 

particle guided by a quasi-standing wave re-

sembles a “standing wave” that is drifting 

without dispersion, in the direction of the 

plane wave associated with the linear mo-

mentum p + Δp, with speed vq ≈ v ≈ Δp/2m 

when Δp << mc. It can be easily checked out 

that the quasi-standing wave given by Eq. 



 

 
 

(24) satisfies Eq. (1) with γv given by Eq. 

(25). From Eqs. (25) and (26) also follows 

that Eqs. (5), (6), and (12) to (14) are satis-

fied. Note that γv ≈ 1 for every p; conse-

quently, the Bohmian particle associated to a 

quasi-standing wave moves like a classical 

particle even at the ultra-relativistic limit.  

VII. EXAMPLE 4: BEATTING 

In this Section we will consider another 

wavefunction of Eq. (1), which can be ob-

tained from Eq. (24) after substituting - k’ by 

+ k’. Eq. (24) corresponds to the superposi-

tion of two plane waves with slightly differ-

ent values of p traveling in opposite direc-

tions. Here we will consider what happens 

when the two waves travel in the same direc-

tion. In this case, we obtained the following 

results:   

∇S = 𝑝 + 
∆𝑝

2
 �̂�  ⇒  v =  

𝑐 (2𝑝+∆𝑝)

√4𝑚2𝑐2+(2𝑝+∆𝑝)2
  ⇒ 𝛾v =

 
1

2√−
𝑚2𝑐2

4𝑚2𝑐2 + (2𝑝+∆𝑝)2

  .      (27) 

 

𝜌(𝑥, 𝑡) =
2

𝐿3 𝑐𝑜𝑠2[𝑘𝑏(𝑥 − v𝑏𝑡)],  𝑘𝑏 =
∆𝑝 

2ℏ
, v𝑏 =

2 
1

2
[𝑝+(𝑝+ ∆𝑝)]

(𝛾v+1)𝑚
  ⇒ 𝑄 =  

(∆𝑝)2

4(𝛾v+1)𝑚
    .   (28) 

Note that kb does not depend on p but is 

proportional to Δp. Therefore, as it should be 

expected, Eqs. (27) and (28) reduce when Δp 

= 0 to Eqs. (18) and (19), which correspond 

to the first example of a single plane wave 

discussed in Section IV. The Madelung fluid 

now flows without dispersion in the same di-

rection than the plane waves, and at the aver-

age speed of both waves. The factor of 2 at 

the front of Eq. (28) for vb is because a 

cos2(ay-bt) shaped wave travels at twice the 

speed than a cos(ay-bt) shaped one. Conse-

quently, the corresponding Bohmian paths 

are uniform and rectilinear at both non-rela-

tivistic and relativistic values of vb. This re-

sult suggests the following very interesting 

possibility: a free relativistic quantum 

particle could be associated to a Gaussian 

pulse, which is formed by a superposition of 

plane waves traveling in the same direction 

with similar values of p, and thus could be a 

solution of Eq. (1). Such a Gaussian pulse 

would travel with very few dispersion at the 

average relativistic speed of all the plane 

waves forming the Gaussian pulse.  

  VIII. CONCLUSIONS 

Madelung, de Broglie, and Bohm refor-

mulated the Schrödinger equation and 

founded the non-relativistic quantum hy-

drodynamics and quantum mechanics with 

trajectories. Following a similar procedure, 

we reformulated the GdeP equation for ex-

tending quantum hydrodynamics and 

quantum mechanics with trajectories to the 

relativistic domain. As it should be ex-

pected, we showed that at non-relativistic 

energies, the resulting equations coincide 

with the well-known non-relativistic equa-

tions. As a prove of the potential practical 

value of the formulated theory, we found 

the relativistic solutions of some simple 

but instructive free particle problems.   
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