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exact quasi‑relativistic 
wavefunctions of Hydrogen‑like 
atoms
Luis Grave de peralta

exact solutions of a novel quasi‑relativistic quantum mechanical wave equation are found for 
Hydrogen‑like atoms. this includes both, an exact analytical expression for the energies of the bound 
states, and exact analytical expressions for the wavefunctions, which successfully describe quantum 
particles with mass and spin-0 up to energies comparable to the energy associated to the mass of 
the particle. these quasi‑relativistic atomic orbitals may be used for improving ab‑initio software 
packages dedicated to numerical simulations in physical‑chemistry and atomic and solid‑state physics.

Wavefunctions of Hydrogen-like atoms, which are obtained by solving the Schrödinger  equation1–5, are often 
used in ab-initio quantum mechanics  simulations6–8.

For instance, there are plotted two probability functions (P(r)) in Fig. 1. P(r) were calculated using the fol-
lowing expression:

In Fig. 1, Rn,l(r) = R2,1,Sch(r) is the radial part of the solution of the Schrödinger equation for Hydrogen-like 
 atoms1–5:

In Eq. (2), ℏ is the Plank constant (h) divided by 2π, m is the mass of the quantum particle, and U(r) is the 
Coulomb  potential1–5:

In Eq. (3), e is the electron charge, Z is the atomic number, and εo is the electric permittivity of vacuum. P(r) 
gives the probability to find the electron inside of a hollow spherical shell of radius r and thickness Δr. In both 
cases (Z = 1 and 100), it was assumed that the electron is in a quantum state with principal quantum numbers 
n = 2 and orbital quantum number l = 11–4. As seen in Fig. 1, the electron is more closely confined around the 
nucleus in the Hydrogen-like Fermium atom (Z = 100) than in the Hydrogen atom (Z = 1). However, when using 
for simulations wavefunctions obtained by solving the Schrödinger equation, one should be aware of the limita-
tions of this description. The Schrödinger equation is not Lorentz  invariant9; therefore, it should only be used 
for atomic simulations when the electron has energies much smaller that the energy associated to his  mass10–13. 
The energies of the electron in Hydrogen-like atoms, calculated using the Schrödinger equation, are given by 
the following  expression1–5:
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In Eq. (4), μ = (memn)/(me + mn) is the electron’s reduced mass, and me and mn are the electron and nucleus 
masses, respectively. Using Eq. (4) and denoting with the symbol (c) the speed of the light in vacuum, one can 
then find that |Ę2,Sch|/μc2 ~ 10–5 and ~ 0.0666 for Z = 1 and 100, respectively. Consequently, one should expect that 
the probability function for Z = 1 plotted in Fig. 1 is a better approximation to reality than P(r) for Z = 100. This 
expectation is confirmed by the probability functions plotted in Fig. 2, where the probability function shown in 
Fig. 1b is superposed to the corresponding probability function calculated using the solutions of the following 
recently reported quasi-relativistic wave  equation10–13:

Formally, Eq. (5) can be obtained by substituting 2 m in Eq. (2) by (γV + 1)m. The factor γV is found in many 
equations of the Einstein’s special theory of relativity, and depends on the ratio between the square of the par-
ticle’s speed (V2) and c214–16:

The quasi-relativistic wave equation (Eq. 5) successfully describes a particle of mass m moving at quasi-
relativistic energies (Ę = K + U ~ mc2)10–13. Equation (5) implies that the relation between the particle’s kinetic 
energy (K) and its linear momentum (p) is the one required by the special theory of  relativity10–16
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Figure 1.  Electron probability functions (P(r/rB), rB is the Bohr radius), which were calculated using the 
solutions of the Schrödinger equation corresponding to n = 2 and l = 1 for Hydrogen-like atoms with (a) Z = 1 
and (b) Z = 100.

Figure 2.  Comparison of the electron probability functions (P(r/rB), rB is the Bohr radius) for n = 2 and l = 1, 
which were calculated for the Hydrogen-like Fermium atom using the solutions of the Schrödinger equation and 
the quasi-relativistic wave equation.
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This contrasts with the non-relativistic relation, K = p2/2 m, for a particle described by the Schrödinger 
 equation1–5,10–16. It should be noted that everywhere in this work, Ę = K + U is called the energy or the quasi-
relativistic energy of the particle. Ę is not the total relativistic energy of the particle (E), which is given by the 
following expression: E = Ę + mc210–16. Also, this work focuses on Hydrogen-like atoms; therefore, m = μ in Eqs. (2), 
(5), and (7). The electron energy when the Hydrogen’s electron is in the quantum state n = 2, l = 1 is much smaller 
than μc2. Consequently, the probability functions calculated using Eqs. (2) and (5) superpose to each other almost 
perfectly (not shown). However, as shown in Fig. 2, this does not happen for Z = 100. Ę2,Sch ~ − 0.0666 μc2 in the 
Hydrogen-like Fermium atom; at these energies, as shown in Fig. 2, the Schrödinger equation underestimate the 
confinement of the electron around the Fermium nucleus. The wavefunctions found solving Eq. (5) then allows 
for improving the calculation of P(r) at quasi-relativistic electron energies.

Previously, the quasi-relativistic wave equation has been solved, following the same mathematical steps 
required for solving the same problems using the Schrödinger equation, for a free  particle10, confinement of 
a quantum particle in  box10,12,13, reflection by a sharp quantum  potential12, tunnel  effect12, and the Hydrogen 
 atom11,13. In this work, it is discussed how to find the quasi-relativistic wavefunctions which are solution of 
Eq. (5). We compare the quasi-relativistic wavefunctions found with the corresponding ones for the Schrödinger 
equation. It is shown that, due to the high similitude between Eqs. (2) and (5), exact analytical solutions of 
Eq. (5) can be found. Moreover, this can be done using the same mathematical techniques used for solving the 
Schrödinger equation and with no more difficulty. In atoms and molecules, the number of particles is constant. 
This is because the energies of the electrons in atoms and molecules are smaller than the energy associated to the 
electron’s mass. The energies of the external electrons in atoms and molecules are non-relativistic; therefore, the 
wavefunctions calculated solving the Schrödinger equation are adequate for conducting simulations involving 
these electrons. However, the internal electrons in heavy atoms have quasi-relativistic energies; therefore, the 
quasi-relativistic wavefunctions, which are discussed for the first time in this work, can be used for improving 
ab-initio quantum mechanics simulations involving the inner electrons of heavy atoms. This also can be done 
using the exact relativistic wavefunctions obtained solving the Dirac  equation2,15,16. However, the Dirac equation 
and the Dirac’s (bispinor) wavefunctions are much more complex than Eq. (5) and its (scalar)  wavefunctions2,15–17. 
Both, Eq. (5) and the Schrödinger equation, allow building a relatively simple and intuitive quantum theory 
of atoms and molecules, where the number of electrons is constant, and no positrons are involved. However, 
Eq. (5) provides the advantage of including the correct relation between K and p, without paying a heavy price in 
mathematical and theoretical complexity. In addition, the wavefunctions of Eq. (5) may be smoothly introduced 
in general courses of Quantum Mechanics for illustrating the consequences, for the quantum theory, resulting 
from the introduction on it of the basic ideas of the special theory of relativity. It should be remarked that the 
wavefunction in Eq. (5) is a scalar. This is because Eq. (5) does include the correct relativistic relation between K 
and p11,13, but does not include the electron spin. The Dirac equation includes exactly both the electron spin and 
the relativistic effects. This requires a bispinor wavefunction with 4  components2,15–18. However, there are approxi-
mated theories only requiring, for the description of the spin effects, spinor two-component  wavefunctions2,15–23. 
In this work, the attention is focused on the consequences resulting, from including the correct relativistic rela-
tion between K and p, for the quantum theory of Hydrogen-like atoms. The rest of this paper is organized in the 
following way. In the next section, for self-reliance purposes, a summary about solving Eq. (5) is presented. In 
addition, and for the first time, an equation given the exact analytical expression of the energy of the bounded 
states in Hydrogen-like atoms is presented. Then, in the following section, the analytical expressions of several 
quasi-relativistic wavefunctions are presented and compared with the corresponding wavefunctions for Eq. (2). 
Finally, the conclusions of this work are given in the “Conclusions”.

Solving the quasi‑relativistic wave equation
Due to the high similitude between Eqs. (2) and (5), exact analytical solutions of Eq. (5), with U(r) given by 
Eq. (3), can be found following the same procedures needed for solving the Schrödinger equation for Hydrogen-
like  atoms1,4,11. Expressing in spherical coordinates the Laplace operator in Eq. (5) and looking for separated 
variables solutions of Eq. (5)1,4,11:

Results1,4,11

where Yl
(m) are the spherical harmonic  functions1–5. And:
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When the electron moves slowly (V2 <  < c2) then γV ~ 1; therefore, Eq. (10) reduces to the radial equation for 
hydrogen-like atoms obtained using the Schrödinger  equation4. If one wants to be able to solve Eq. (10), using 
the same techniques that are used for solving the Schrödinger’s radial equation for a hydrogen-like atoms, it is 
necessary to eliminate γV from Eq. (11) This can be done using the relativistic  equation11,14:

Therefore:

One can then use Eq. (13) and introduce the following  variables11:

In Eq. (14), α is the fine-structure  constant15,16:

And4,11:

This allows for rewriting Eq. (10) in the following  way11:

When ℏζ <  < μc and α2Z2 <  < 1, Eq. (17) reduces to the equation that is solved for the Hydrogen atom when 
using the Schrödinger  equation4:

From Eq. (18) can be found  that4:

Consequently, when ℏζ <  < μc and α2Z2 <  < 1, Eq. (4) can be obtained from Eqs. (14), (16), and (19)4. How-
ever, each of the three terms in the right side of Eq. (17) contains a different quasi-relativistic correction to the 
radial equation of Hydrogen-like atoms. Fortunately, the quasi-relativistic Eq. (17) can be solved as Eq. (18) was 
 solved4,11. One can look for a solution of Eq. (17) of the following  form11:

This allows expressing τ(ρ) as a finite power series in ρ4,11:

In Eq. (21), jmax = n − (l + 1)  and11:

Evaluating Eq. (22) for j = jmax and making ajmax+1 = 0, one can  obtain11:

In Eq. (23)11:
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In some cases, for heavy Hydrogen-like atoms with Z >  > 1, the term inside the square root in Eq. (24) could 
be negative; in these cases, the approximation to the square root included in Eq. (24) should be used. Substituting 
ρo and ρ1 given by Eq. (14) in Eq. (23), solving the resulting equation for ζ, and using Eq. (16), produce an exact 
analytical expression for Ȩ, which now depends not only on the principal quantum number n, but also on the 
orbital quantum number l and Z11. This expression is given here for the first time:

In Eq. (25), Δ = Δ(l, Z) given by Eq. (24), and Ξ is given by the following expression :

Expressing Eq. (25) as a series in powers of α, and taking the first terms of the series up to α4, conduct exactly 
to the following approximated expression of Eq. (25):

In Eq. (27), Ęn,Sch given by Eq. (4) was rewritten as a function of α in the following way:

Therefore, as should be expected, when α2Z2/n2 <  < 1, Eq. (25) reduces to Eq. (4). Moreover, Eq. (27) is exactly 
equal to the relativistic correction to the kinetic energy in first-order perturbation  theory4,17. A comprehensive 
comparison between the energies calculated using Eq. (2), Eq. (5), and the available experimental data cor-
responding to the Hydrogen’s spectrum, was recently  reported11,17. In that work, Eq. (25) was not used but the 
following approximate  equation11:

Equation (29) was obtained assuming that the quasi-relativistic corrections included in ρo and ρ1 do not need 
to be accounting for because they are too small; therefore, Eq. (29) only includes the effect of the quasi-relativistic 
correction included in the centrifugal term in Eq. (17)11.

A comparison of Ęn,l dependence on Z, when Ęn,l is calculated using Eqs. (25), and (27–29), is shown in Fig. 3. 
In all cases the Schrödinger equation (Eqs. 4 and 28, gray continuous curves in Fig. 3) gives the smaller value of 
|Ęn,l|, while Eq. (29) gives the largest (gray dashed curves). As expected, all equations give similar values when 
|Ęn,l|/μc2 <  < 1. Interestingly, at quasi-relativistic energies Eq. (27), the well-known equation given the relativistic 
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Figure 3.  Comparison of the dependence on Z of the calculated energies for (a,b) n = 1 and l = 0, (c) n = 2 and 
l = 0, and (d) n = 2 and l = 1. Ęn,l was evaluated using Eqs. (gray continuous) (28), (black dashed) (27), (black 
continuous) (25), (gray dashed) (29).
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correction to the kinetic energy in first-order perturbation theory (black dashed curves) underestimate the exact 
value of |Ęn,l| (Eq. 25), black continuous curves in Fig. 3. It is worth restating Eq. (25) is an exact result presented 
here for the first time, while Eq. (27) is a well-known approximated  result4,17. This strongly supports the use of the 
Grave de Peralta equation (this is how the author proposes Eq. (5) to be called) for describing quantum particles 
with mass and spin-0 moving at quasi-relativistic  energies10–13. A comparison between the energies calculated 
using Eq. (25), and the energy values calculated using the Dirac equation, allows a precise determination of which 
energy contributions are included in Eq. (25) and which ones are not included on it. The following equation gives 
the exact energies calculated using the Dirac  equation2:

In Eq. (30), j = l ± ½2. Figure 4, shows a comparison of the energies calculated using Eqs. (25) and (30).
The Dirac’s energies include three corrections to the energies calculated using the Schrödinger  equation2,17. 

The first is the relativistic correction to the kinetic energy. This correction is exactly included in Eq. (25)11,18. The 
second is the so-called Darwin correction, which is only non-zero when l = 02,11,17,18. The Darwin correction is 
related with the non-zero probability for the electron to be found in the nucleus when l = 02,17. The third correc-
tion is the spin–orbit correction, which is only non-zero when l > 02,11,17,18. As shown in Fig. 4a, the Darwin cor-
rection destabilizes the electron (Ęn,l,j > Ęn,l)17. This destabilization increases at quasi-relativistic energies (Z >  > 1). 
As shown in Fig. 4b, the spin–orbit correction splits the quasi-relativistic energy level Ęn,l in two energy levels 
corresponding to j = l ± ½2,17. The spin–orbit correction also increases when Z >  > 1. However, the energy dif-
ference |Ęn,l,j—Ęn,l| is smaller in Fig. 4b than in Fig. 4a because |Ę| is an order of magnitude larger in the ground 
state with n = 1 and l = 0 than in the excited state with n = 2 and l = 1.

Quasi‑relativistic wave functions
The exact analytical wavefunctions of Eq. (5) are given by Eq. (8) with Ęn,l given by Eq. (25), Ωl,ml by Eq. (9), and 
χ(ζr) and τ(ζr) given by Eqs. (20–21) and (16). Therefore, the quasi-relativistic wavefunctions only differ from 
the wavefunctions of the Schrödinger equation in the values of Ę and in the radial part of the wavefunctions. 
τ(ρ) is given by Eq. (21) with jmax = n − (l + 1). Before using Eq. (22) for finding the coefficients, aj, ρ1 should be 
determined using Eqs. (14), (16), and (25), then ρo can be obtained using Eqs. (23) and (24). After τ(ρ) is found 
for given values of n and l, χ(ρ) can be obtained using Eq. (20). Finally, the complete unnormalized radial wave-
function is Яn,l = χ(ζr)/r. Therefore, the normalized radial wavefunctions are given by the following equation:

The above description constitutes a general method for obtaining any radial wavefunctions corresponding 
to Eq. (5). In what follows, for illustration purposes, the Яn,l(r) functions corresponding to the ground state and 
first excited states of Hydrogen-like atoms will be explicitly discussed. In addition, P(r) will be calculated using 
Eq. (1) for doing a meaningful comparison (Fig. 2) between Rn,l(r) and the corresponding radial wavefunctions 
of the Schrödinger  equation4. Following the general method stated above, it was obtained the following expres-
sion for the ground state (n = 1, l = 0) of Hydrogen-like atoms:

In Eq. (32), A1,0, B1,0, and C1,0 are given by the following expressions:
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Figure 4.  Comparison of the dependence on Z of the calculated energies for (a) n = 1 and l = 0, (b) n = 2 and 
l = 1. Ę was evaluated using Eqs. (black continuous) (25), (blue dashed) (30) with j = l + ½, and (red dot-dashed) 
(30) with j = l—½.
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In Eq. (33), Δ = Δ(l, Z) given by Eq. (24); therefore, by expressing the parameters A1,0, B1,0, and C1,0 as a 
series in powers of α each, and approximating them by the first terms of the series, one can obtain the following 
approximations for this parameters, which are valid when α2 Z2 <  < 1:

Consequently, Я1,0(r) ~ Я1,0,Sch(r) when α2 Z2 <  < 14:

In Eq. (35), rB = ℏ/(αμc) is the Bohr  radius1–5. There are two possible values of l in the first excited state (n = 2); 
l = 0 and l = 11–5. For l = 0, it was obtained:

In Eq. (36):

Following the same procedure discussed above, it can be shown that Я2,0(r) ~ Я2,0,Sch(r)4:

Finally, it was obtained for n = 2 and l = 1:

In Eq. (39):

Here again, Я2,1(r) ~ Я2,1,Sch(r) when α2Z2 <  < 14:

As shown in Fig. 3a,b, there is a notable difference between the energy Ę1,Sch ~—0.2663 μc2 corresponding 
to the ground state of the Hydrogen-like Fermium atom (Z = 100), which is calculated using the Schrödinger 
equation (Eqs. 4 and 28), and the energy Ę1,0 ~—0.7556 μc2 which is calculated using Eq. (25). At energies like 
Ę1,0 ~—0.7556 μc2, one should expect a notable difference between Я1,0(r) and Я1,0,Sch(r). This is confirmed by the 
probability functions (P(r/rB) shown in Fig. 5, which were calculated using Eqs. (1) and (31) and the functions 
Я1,0(r) and Я1,0,Sch(r) given by the Eqs. (32) and (35), respectively. Clearly, using the Schrödinger equation causes 
a notable underestimation of the confinement of the electron around the Fermium nucleus. This result was pre-
viously mentioned in the preliminary discussion of Fig. 2 made in the Introduction. The probability functions 
(P(r/rB) shown in Fig. 2 were calculated using Eqs. (1) and (31) and the functions Я2,1(r) and Я2,1,Sch(r) given by 
the Eqs. (39) and (41), respectively. Using Eq. (25) with n = 2, l = 1, and Z = 100, one can find that Ę2,1 ~ − 0.0724 
μc2; therefore |Ę1,0| is an order of magnitude larger than |Ę2,1|. A comparison of Figs. 2 and 5 reveals that the 
underestimation of the electron confinement around the Fermium nucleus, which results from the use of the 
Schrödinger equation, dramatically increases as |Ęn,1| increases. This strongly supports the substitution, in ab-
initio software packages, of the Schrödinger’s radial wavefunctions for the ones which are solutions of Eq. (5), 
when simulations involving the inner electrons of heavy atoms should be conducted.

conclusions
In this work, first, it was obtained an exact analytical expression, which allows obtaining the quasi-relativistic 
energies of the bound states of the electron in Hydrogen-like atoms. The energies calculated in this way include 
the first-order perturbation relativistic correction to the kinetic energies calculated using the Schrödinger equa-
tion. Moreover, it was shown that Eq. (25) is the exact expression corresponding to the well-known approximate 
results given by Eq. (27). Second, it was discussed how to obtain the exact analytical wavefunctions of the quasi-
relativistic wave equation used in this work (Eq. 5). The solutions were found following the same procedures, 
and with no more difficulty, than the ones present when solving the same problems using the Schrödinger 
equation. Nevertheless, the solutions found in this work are also valid when the particle is moving at energies 
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as high as the energy associated to the particle’s mass. These quasi-relativistic atomic orbitals may be used for 
improving ab-initio software packages dedicated to numerical simulations in physical-chemistry and atomic 
and solid-state physics.
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Figure 5.  Comparison of the electron probability functions (P(r/rB), rB is the Bohr radius) for n = 1 and l = 0, 
which were calculated for the Hydrogen-like Fermium atom using the solutions of the Schrödinger equation and 
the quasi-relativistic wave equation.
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