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Abstract 
It is shown how to build a simple but exact theory of a relativistic Fermi gas at 
0 ˚K, which is based in a recently reported analytic formula for the energies of 
a relativistic spin-0 particle in a box. A white dwarf star is then simulated as a 
sphere filled with a relativistic Fermi gas. The Chandrasekhar mass limit is 
simply obtained using this model. We then discuss, using the proposed ap-
proach to relativistic quantum mechanics, how the interplay between the spe-
cial theory of relativity, quantum mechanics, and gravity determines the sta-
bility of the matter. 
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1. Introduction 

The theory of a non-relativistic Fermi gas is commonly discussed in the context 
of the theory of metals in solid state physics [1]. The theory of a non-relativistic 
Fermi gas is built from a well-known analytical expression, which gives the ener-
gies of a non-relativistic spin-0 particle in a three-dimensional infinite well (par-
ticle in a box) [2]. The Pauli exclusion principle is used, in the non-relativistic 
theory of a Fermi gas at 0 ˚K, for taking care of the fermion nature of the par-
ticles forming a Fermi gas [1] [2]. However, this relatively simple theory cannot 
be directly extended to the relativistic domain [3] [4]. This is because no such 
analytical expression was known, until recently, for the energies of a relativistic 
spin-0 particle in a box. In this work, we show, for the first time, how a simple 
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but precise theory of a relativistic Fermi gas can be constructed. We use for this a 
recently reported analytical expression for the energies of a relativistic particle in 
a box [5] [6] [7] [8]. As it is shown in the Appendix, this analytical expression 
was obtained by solving a surprising Schrödinger-like but quasi-relativistic wave 
equation; therefore, using the same mathematical techniques required for ob-
taining the non-relativistic formula [2] [5] [6] [7] [8] [9]. 

In what follows, first, in Section 2, some results of such a simple theory of a 
relativistic Fermi gas, at a 0 ˚K temperature, are presented. While the conse-
quences for solid state physics of this theory will be presented elsewhere, here, in 
Section 3, these results are used, for the first time, for obtaining in an alternative 
way, simple but precise, the Chandrasekhar mass limit of Fermi gas stars. Then, 
in Section 4 is presented a discussion about how the interplay between quantum 
mechanics, Newtonian gravity, and special relativity determines the stability of 
the matter. Finally, the conclusions of this work are given in Section 5. 

2. The Approach  

The theory of a non-relativistic Fermi gas, formed by N non-interacting fermions 
with spin-1/2, is based on the knowledge of the analytic expression of the ener-
gies corresponding to a 0-spin particle trapped in an infinite well (particle in a 
box), which can be easily calculated using the Schrödinger equation [1] [2]. The 
fermion nature of the particles is included by considering the Pauli exclusion 
principle, which is purely quantum in nature, and implies that only two fer-
mions can simultaneously be at the same quantum state [1] [2]. 

Only recently, an analytic expression giving the energies of a spin-0 particle 
trapped in an infinite well was reported [5] [6] [7] [8]. This result was obtained 
using the GPPP (Grave de Peralta-Poirier-Poveda) method [5] [6] [7] [8] [9]. A 
fast review of the GPPP method is described for self-suffice reasons in the Ap-
pendix. It is worth noting that, first, there is an excellent agreement between the 
energies calculated using the analytic formula [5] [6] [7] [8], and the energies 
numerically calculated using the Dirac equation [10]. Second, it is well unders-
tood the relationship between the GPPP method and the Dirac equation [11]. 
Consequently, we can now construct a simple but exact theory of Fermi gases, 
which is valid from the non-relativistic to the ultrarelativistic regime. For doing 
this, we just need to repeat the same steps often follows for constructing the 
non-relativistic theory of a Fermi gas but using the new energy formula. We 
should start by substituting the non-relativistic formula for the energies of a 
quantum particle of mass m in a cubic box of size L [1] [2]: 

( )
2 2

2
, ,2 , , , , 1, 2,

2 x y z x y zE n n n n
mL
π

= = =n n n�
�             (1) 

by the corresponding formula for a relativistic particle [5] [6] [7] [8]: 

( )
( )

2 2
2 2

2 1 .
1

E mc
mL

γ
γ
π

= = −
+n n�                   (2) 
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In Equations (1) and (2), ħ is the reduced Plank constant [1] [2], and γ is the 
especial relativity Lorentz factor [5]-[12]:  

2 2
2 2

2 21 1 , .C
C

p

L mcm c
γ  = + = + π = 

 

n n
� �

�             (3) 

In Equation (3), p is the magnitude of the linear momentum of the particle in 
the box, and (c) is the speed of the light in the vacuum. In the non-relativistic 
limit, L mc� � ; therefore γ ≈ 1 and then Equation (2) coincides with Equation 
(1). In the ultrarelativistic limit, L mc� � ; therefore 1γ � , thus Equation (3) 
also gives the correct relation between E and p for an ultrarelativistic particle [3] 
[4]: 

, .E p c p h
L

= =n n n

n
                     (4) 

In the thermodynamic limit, 1N � , each quantum state corresponds to a 
point in the “n-space” with energy given by Equation (2) [1]. In the ground state 
of the Fermi gas at 0 ˚K, all the energy levels up to the Fermi energy (EF) level are 
occupied, and all the higher levels are empty [1]. The ground state is then 
represented by a three-dimensional isotropic and uniform Fermi sphere. There-
fore, the number of states in the Fermi sphere and its radius are related by the 
following equation [1]: 

1 3
31 4 32 .

8 3 F F
NN  = × × π ⇒ =  π 

n n                (5) 

In Equation (5), the factor of two expresses the two spin states, and the factor 
of 1/8 expresses the fraction of the sphere that lies in the region where all nx,y,z 
are positive. Substituting Equation (5) in Equation (2), and replacing L2 by V2/3, 
we obtain a formula for EF: 

( )
( ) ( ) ( )

2 32 2 2 3 2 3
2 32 2 2

3
1 , 1 3 .

1F C
N NE mc

m V V
γ γ

γ

π    = = − = + π   +    

�
�     (6) 

It is straightforward to show that Equation (6) gives the correct values of EF in 
both the non-relativistic and the ultrarelativistic limits [1] [3] [4]. Moreover, 
Equation (6) is valid in all this range. The rest of the theory of a Fermi gas is 
constructed from the analytic formula for EF [1]. For instance, the total energy of 
the Fermi gas when it is in its ground state at 0 ˚K is: 

( )2 3 2 32 2

0

3 d .
1 F

N
T

N
E N N E

m V
θ

γ
′ π ′= ≈  + 

∫
�                (7) 

The integral in Equation (7) can be easily calculated in the non-relativistic (θ 
= 3/5) and the ultrarelativistic (θ = 3/4) limits. Consequently, Equation (7) with 
θ slowly changing from 3/5 to 3/4 gives the exact value of ET in the relativistic 
and ultrarelativistic limits [1] [3] [4], and it is a good approximation to ET in 
between these limits. The degeneracy pressure of the Fermi gas is then calculated 
as [1] [3] [4]: 
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VEP
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V


  ∂  = − ∝ 

∂    

                   (8) 

We should emphasize here that the existence of the degenerate pressure in a 
Fermi gas is a purely quantum effect. 

3. The Chandrasekhar Mass Limit 

Using the Fermi gas as a model, it is possible to calculate the Chandrasekhar 
limit, i.e., the maximum mass any white dwarf star may have (without significant 
thermally generated pressure) without collapsing into a black hole or a neutron 
star. The latter is a star mainly composed of neutrons, where the collapse is also 
avoided by neutron degeneracy pressure [13] [14]. 

A simple model for a Fermi gas star, formed by 1N �  spin-1/2 particles of 
mass m, is a spherical star of radius r formed by a Fermi gas of total mass MS = 
Nm and constant density ρ = MS/V, with V = (4/3)πr3. Using this model, the to-
tal kinetic energy of the gas (associated to the degeneracy pressure) is ET as given 
by Equation (7). Consequently, when including the Newtonian gravitational 
energy [13], we obtain for the total energy of the star (ES): 

( ) ( )
2

.S
s T G

GM
E r E r

r
α= −                       (9) 

In Equation (9), G is the gravitational constant, and the parameter αG is equal 
to 3/5 = 0.6 for a constant density sphere, but it takes slightly different values 
depending on the details of de internal structure of the star (ρ(r)). Using Equa-
tions (6) and (7), substituting V by (4/3)πr3, and rearranging Equation (9 ), we 
obtain: 

( )
( )

2 35 3 2 2 32

2 8 3 2 2

3, , 1 .
41

S S S
s G

M GM MaE r a a
rr m c r

θ α γ
γ

π = − = = + +  

�   (10) 

Or alternatively: 

( )
2 3 2

2
2 21 1 .S S

s S G
M GMaE r M c

rc r
θ α
 
 = + − −
 
 

            (11) 

The radius of the Fermi gas star can be then estimated as the values of r for 
which ES(r) has a local minimum. When the particles forming the gas move at 
non-relativistic speeds, it is easier to use Equation (10) with γ = 1. Solving the 
equation dES/dr = 0, we obtain: 

1 332 3

1 3

3 .
4

P
P

G SG S

ma mr l
m MGM

θ θ
αα

   π   = =              
          (12) 

For obtaining Equation (12), we used the following relations involving the 
Plank’s length (lP) and mass (mP): 
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32 2 2
1 3

8 3 3 3 3, , , .P
P P P

m G cm l l m
m GGm Gm Gm c

 = = = = 
 

� � � � �       (13) 

Therefore, a non-null radio, which decreases monotonically when MS increas-
es, exists for any star mass. This indicates the existence of an equilibrium be-
tween the centrifugal influence of the degeneracy pressure (a purely quantum 
mechanical effect) and the crushing gravitational force in the massive star. In 
contrast, when the particles forming the gas move at ultrarelativistic speeds, we 
can use either one of Equations (10) and (11) with:  

1 3

1.SMa
c r

γ ≈ �                        (14) 

For obtaining: 

( ) ( )4 3 2 1 .S S G SE r c aM GM
r

θ α≈ −                (15) 

Consequently, SE → −∞  when 0r → ; i.e., the star collapses, when: 
3 2 23 .

4
P

S Ch P
G

mM M m
m

θ
α
  π  > =    

  
              (16) 

We obtained an excellent agreement with the Chandrasekhar mass limit (MCh 
≈ 1.43 solar mases) [3] [11] [12], when taking m ≈ 1.992 times the Hydrogen 
mass (mH), and αG ≈ 0.4725. Finally, using Equations (11) and (13), and solving 
the equation dES/dr = 0, we obtain: 

1 3 4 332 33 1 .
4

SP
P

G S Ch

Mm mr l
m M M

θβ
α

     π   = −                 
         (17) 

The dependence of r (in solar radii) on MS (in solar mases) corresponding to 
Equation (17) is shown as a continuous red curve in Figure 1. We used here the 
same values of m, and αG reported above. The parameter β = 7 was needed for 
qualitatively matching previously reported radius-mass relations [3] [14]. This 
indicates that the inclusion of effects related to the internal structure of the stars 
are needed for making detailed quantitative calculations [3] [13] [14]. Neverthe-
less, the overall picture discussed in this Section is correct, and the collapse 
( 0r → ) of the ultrarelativistic Fermi gas star in now evident when S ChM M→ . 
Clearly, Equation (17) coincides with Equation (12) in the non-relativistic limit, 
i.e., when S ChM M� . The dependence of r on MS corresponding to Equation 
(12) is shown as a discontinuous blue curve in Figure 1. Note that the gravita-
tional collapse of a Fermi start can only be predicted when the effects of the 
especial relativity are included in the model. 

4. Stability of the Matter 

The curves shown in Figure 1 describe the stability of huge cosmological objects 
formed by numerous quantum particles. However, these curves streakily resem-
ble other curves that were obtained while describing the stability of elemental  

https://doi.org/10.4236/jmp.2021.1214113


R. Lopez-Boada, L. Grave de Peralta 
 

 

DOI: 10.4236/jmp.2021.1214113 1971 Journal of Modern Physics 
 

 
Figure 1. Radius-mass relations in a Fermi gas star model, relativistic (con-
tinuous red curve) vs non-relativistic (discontinuous blue curve). 

 
particles and atoms [5]. It has been shown that a good estimate of the size of a 
Hydrogen-like atom, which is formed by an electron of mass me bounded to a 
nucleus of charge Ze, where e is the absolute value of the electron charge, can be 
obtained as the value of r minimizing the energy of the electron in the atom (E), 
which is given by the following expression [5]: 

( )
( )

22 2

2
0

, 1 .
41

C

e

ZeE r
r rm r

γ
γ

 ≈ − = +  π+  

��


             (18) 

Equation (18) is like Equation (10) but with the relativistic quantum mechanics 
term, ET(r), substituted by the relativistic quantum mechanics kinetic energy of 
the electron, and the gravitational energy of the Fermi gas substituted by the 
Coulombic energy of the electron in the atom [2] [5] [15].  

It is not then surprising that the dependence of the size of the atom (r) on Z, as 
shown in Figure 2(a), resembles the curves plotted in Figure 1. In this case, a 
non-relativistic description (continuous blue curve) predicts atoms with any val-
ue of Z should all be stable. However, when special relativity in included in the 
model (red points), and Z < 137, the electrical force between the nucleus and the 
electron tends to collapse the atom but pure quantum mechanical effects stabilize 
it. In contrast, atoms with Z > 137 are unstable (the electron collapses to the nuc-
leus, 0r → ) and thus these atoms should not exist [5]. Indeed, no atom with Z > 
118 has ever been observed. 

The following hypothesis, explaining why there are not elemental quantum par-
ticles with a mass larger than the Plank mass [5] [16], is much more closely re-
lated with the previous discussion about the fate of Fermi gas stars. If an elemen-
tal particle of mass m were able to interact gravitationally with itself, due the 
spread of its mass density through its wave function [5] [16] [17], the energy of 
the free particle could be estimated using the following equation [5] [16]: 

( )
( )

2 2

2 .
1

GmE r
rmrγ

≈ −
+
�                    (19) 

With γ given by Equation (18). The value of r that minimizes Equation (19) 
was found solving the equation dE/dr = 0 [5] [16]: 

4 3

1 , .P
D D P

P

mmr a a l
m m

   = − =   
  

                (20) 
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Figure 2. (a) Calculated radii of hydrogen-like atoms in C�  (reduced Compton wave-
length) units as a function of Z for (continuous blue curve) γ ≈ 1 and (red points) 1γ � . 
(b) Calculated radii of the radius of a quantum particle, in Plank units, as a function of m 
in Plank units for (discontinuous blue curve) γ ≈ 1 and (continuous red curve) 1γ � . 

 
In contrast, for the non-relativistic case; i.e., using Equation (19) with γ = 1, it 

was found that r = aD [5] [16]. As shown in Figure 2(b), a non-relativistic de-
scription (discontinuous blue curve) predicts elemental particles with any mass 
are possible. The dependence of r (in Plank units) on m (in Plank units) corres-
ponding to Equation (20) is plotted in Figure 2(b) as a continuous red curve. 
When special relativity is included in the model, and m < mP, gravity tends to 
collapse the particle, but pure quantum mechanical effects stabilize it. However, 

0r →  when Pm m→ ; thus, as it is well known, no elemental particles with mass 
larger than the Plank mass could exist [5] [16]. Moreover, Figure 2(b) shows that, 
close to the particle collapse, the size of the particle is ~ aD. This factor also ap-
pears in Equations (12) and (17). A comparison of Equations (17) and (20), and 
Figure 1 and Figure 2(b), reveals the transition from stable to instable is more 
abrupt for a single particle than for a Fermi gas star.  

The stability of atoms, the so-called stability of the first kind [18], disappears 
when the combined effects of special relativity and electrostatic overcome the sta-
bility provides by quantum mechanics effects, thus producing the collapse of su-
perheavy atoms. The stability of single quantum particles, a kind of zero-order 
stability, disappears when the combined effects of special relativity and gravity 
overcome the stability provided by quantum mechanics effects, thus producing 
the collapse of elemental particles. While elemental quantum particles with a mass 
larger than the Plank mass may not exist [5], massive cosmological bodies formed 
by an extremely large number of quantum particles do exist. The stability of the 
white dwarfs and neutron stars is an instance of the so-called stability of the 
second kind [18]. This stability also disappears when the combined effects of spe-
cial relativity and gravity overcome the quantum effects, associated to the Pauli 
exclusion principle, that makes the stability possible. 

5. Conclusion 

We have shown that the analytical expression of the energies of a relativistic 
spin-0 particle trapped in a cubic box, which can be obtained using the GPPP ap-
proach (as shown in the Appendix), can be used as the foundation of a simple 
but exact theory of a Fermi gas, which is valid from the non-relativistic to the ul-
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trarelativistic regimes. For instance, we were able to obtain the Chandrasekar mass 
limit using this approach and, due to the simplicity of our approach, we were able 
to illustrate the interplay between gravity, quantum mechanics, and special theory 
of relativity that determines the stability of matter.  
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Appendix 

The Poirier-Grave de Peralta equation [5] [19]: 

( )
2 2

2 2

ˆ ˆˆ ˆ, 1 , .
ˆ 1

p pi V p i
t m m c

γ
γ

 ∂
Ψ = + Ψ = + = − ∇ 

∂ +  
� �         (A1) 

is fully Lorentz-covariant [5]. It can be shown that for a particle in the box, Equa-
tion (A1) exactly reduces to solving the following Schrödinger-like equation [5] 
[19]: 

( )
2

2 .
1

i V
t mγ
∂
Ψ = − ∇ Ψ + Ψ

∂ +
�

�                  (A2) 

In Equation (A2), γ is not an operator but the parameter (GPPP approach) [5]: 
2

2

ˆ21 , .
2Sch Sch Sch Sch
pE E
mmc

γ ψ ψ= + =             (A3) 

In Equation (A3), ESch and ψSch are the energy and wavefunction, respectively, 
of the particle in a box calculated by solving the Schrödinger Equation [2]. Clearly, 
Equation (A2) is the Schrödinger equation when γ = 1. Moreover, Equation (A2) 
can be solved as the Schrödinger equation is solved [5] [6] [7] [8] [9]. For a par-
ticle in the box [5]: 
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Equations (2) and (3) follows directly from the substitution of ESch = E|n| given 
by Equation (1) in Equation (A4). It should be noted that there is an excellent 
correspondence between the energy values calculated using Equations (2) and (3), 
and the numerically calculated energies using the Dirac’s equation [10]. 
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