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PREFACE 
 
It is evident that living beings made of matter surround us. These living beings 
contain atoms with electrons and protons. However, there are not living beings 
made of antimatter surrounding us. This hypothetical living beings made of 
antimatter should contain antimatter atoms with positrons and antiprotons. Why 
does this biological matter-antimatter asymmetry exist? This work presents a 
surprisingly simple answer to this question. In short, this is a theoretical 
consequence of the introduction of special relativity in quantum mechanics. In 
addition, it is necessary to assume that both an electrically charged particle with 
mass and the corresponding antiparticle could interact electrically with itself. 
Finally, for breaking the theoretical matter-antimatter symmetry, it is necessary to 
postulate that a particle electrically interacts with itself differently than the 
corresponding antiparticle interacts with itself.  
 
The question “where the biological antimatter is?” is not a trivial question. This is 
because its answer brings transcendental implications for our best physical 
theories. Fortunately, the answer to this question presented in this book 
coincides with our everyday experiences. Biological antimatter does not surround 
us because biological antimatter cannot exist. The author invites the readers to 
follow him through this exercise of scientific curiosity.     
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ABSTRACT 

 
We are surrounded by living beings made of matter. However, no living beings 
made of antimatter have ever been observed. This looks like a huge wrong 
prediction of our best theories about the physical fundaments of our world. In this 
work, the author advances a possible explanation of this mystery. This work 
discusses how we could explain the everyday experience of the absence of 
biological antimatter in our world by maintaining the validity of relativistic 
quantum mechanics but adopting the idea that an electron like a positron could 
interact electrically with itself. For simplicity, the discussion is based on the 
solution of the Grave de Peralta equation for the infinity well. This is the simplest 
model for a spatially localized relativistic quantum particle with mass. A 
semiquantitative discussion of the consequences of adding the interaction of the 
quantum particle with itself is presented. The matter-antimatter symmetry is 
broken by postulating that a particle electrically interacts with itself in a different 
way than the corresponding antiparticle interacts with itself. 
  
Keywords: Antimatter; biological antimatter; special relativity; quantum 

mechanics; relativistic quantum mechanics. 
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INTRODUCTION 
 
We are surrounded by living beings made of matter. However, there are no 
known living beings made of antimatter. At first sight, this everyday fact looks so 
trivial that it doesn't justify any scientific curiosity about it. Unfortunately, there is 
a deep reason for this apparent lack of scientific curiosity. 
 
The standard model of particle physics is currently considered by most physicists 
as our best theory about the physical fundaments of our world [1]. In this theory, 
an antiparticle made of antimatter corresponds to each particle made of matter. 
The exceptions are some particles that are their own antiparticles. Particles and 
antiparticles are created from the quantum vacuum in pairs [2]. Moreover, the 
standard model of particle physics predicts that, besides a few exceptions, there 
should be a matter-antimatter symmetry in Mother Nature [3-4]. Consequently, a 
world where antimatter should be as abundant as matter is the big picture of the 
world predicted by the standard model of particle physics. This contradicts our 
everyday experiences. We are surrounded by matter, but antimatter is scarce in 
the known universe. 
 
Moreover, we are surrounded by living beings made of matter. However, no living 
beings made of antimatter have ever been observed. This looks like a huge 
wrong prediction of our best theories about the physical fundaments of our world. 
Unfortunately, the apparent lack of scientific curiosity about the inexistence of 
biological antimatter may be a subtle effort to hide the shortcomings of our best 
physical theories. 
 
In this monograph, the author advances a possible explanation of this mystery. 
Of course, the author’s hypothesis should be a controversial one because it 
challenges current viewpoints in the standard model of particle physics. Looks 
like there is no other way of explaining our everyday experiences. The basic idea 
behind the author’s hypothesis is this: each quantum particle and antiparticle 
interact with itself.  
 
Why this simple idea is so controversial? Clearly, every macroscopic object 
surrounding us interacts with itself. For instance, the existence of magma in the 
interior of our planet is a consequence of the huge gravitational attraction of 
some parts of the Earth produced on other parts of it. Also, it is well known the 
existence of quantum objects that interact with themselves. For instance, the 
Hydrogen atom exists because there is an electromagnetic interaction between 
the electron and the proton forming it. The difficulty appears when we consider 
fundamental quantum particles. In the standard model of particle physics, the 
fundamental quantum particles are literally points with null size; therefore, 
fundamental particles like electrons do not have parts that could interact with 
each other.  
 
In the standard model of particle physics, an electron is a mathematical point; 
therefore, an electron cannot interact with itself. This extremely mathematical 
idea about the electron is challenged by the author in this monograph. The 



 
 
 

Where the Biological Antimatter is? 
Introduction 

 
 

 

 
3 
 

author’s conceded this is currently a controversial idea, but curiosity is in 
science’s heart. In this monograph, the author discusses how we could explain 
the everyday experience of the absence of biological antimatter in our world by 
maintaining the validity of relativistic quantum mechanics but adopting the 
currently controversial idea that an electron like a positron could interact 
electrically with itself.  
 
This is not an easy-to-read book because it assumes the validity of relativistic 
quantum mechanics [2, 4], which is not an easy topic. Nevertheless, the author 
uses a simpler introduction to relativistic quantum mechanics recently proposed 
[4]. There is no use of the Dirac wave equation in this approach to relativistic 
quantum mechanics. Instead of the Dirac equation [2], this book is based on a 
simpler Schrödinger-like but relativistic wave equation, the so-called Grave de 
Peralta equation [4]. For simplicity, the discussion is based on the solution of the 
Grave de Peralta equation for the infinity well. This is the simplest model for a 
spatially localized relativistic quantum particle with mass. A semiquantitative 
discussion of the consequences of adding the interaction of the quantum particle 
with itself is presented. 
 
Finally, the matter-antimatter symmetry is broken by postulating that a particle 
electrically interacts with itself in a different way than the corresponding 
antiparticle interacts with itself. It is shown a notable consequence of this 
hypothesis: this theory can explain our everyday experience of living in a world 
where only biological beings made of matter exist. This strongly suggests that 
current relativistic quantum mechanics should be expanded by including the 
interaction of each quantum particle and antiparticle with itself. 
 
It is worth noting that this monograph only refers to gravitational and electrical 
interactions. No reference to other kinds of interactions is needed to explain the 
formation of inorganic and organic molecules, viruses, cells, and other living 
forms.   
 
The author invites the readers to follow him through this exercise of scientific 
curiosity.  
___________________________________________________________________________________ 
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The Simplest Model of a Spatially 
Confined Quantum Particle 
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The description of classical particles corresponds with our everyday experiences 
of objects, small and humongous, which we perceive as spatially localized. We 
can certainly talk about the size of a classical particle. Moreover, our everyday 
experiences tell us that we are surrounded by classical particles. In Classical 
Mechanics, the translation of a classical particle is described through the 
description of the translation of its center of mass [5]. The center of mass is a 
mathematical point of null size. However, the classical particle has no null size.  
 
Quantum particles are different. There is a wave or quantum field associated with 
each quantum particle [6]. Nevertheless, like every particle, quantum particles 
are supposed to be spatially localized in some way. A quantum particle could be 
found anywhere its wavefunction or quantum field exists [6]; therefore, the 
particle character of a quantum particle could be associated with the spatial 
extension or size of the wavefunction associated with it. For instance, the 
Hydrogen atom is very small, but it is not a mathematical point without size. This 
is because the electron in the Hydrogen atom could be anywhere the 
wavefunction associated with the electron exists. The electron’s wavefunction is 
spatially localized around the proton in the Hydrogen atom. This determines the 
small size of the Hydrogen atom. In Quantum Mechanics, a wave packet is 
usually used as the wave function associated with a free particle [6]. The spatial 
localization of the wave packet in a small region corresponds to the intuitive 
spatial localization that every particle should have.   
 
In nonrelativistic quantum mechanics, the wave function associated with a 
quantum particle is found by solving the Schrödinger equation [6]. For this 
reason, some mathematical skills are required for a full understanding of 
Quantum Mechanics. Nevertheless, to reach the maximum audience possible, 
we will use in this monograph the minimum amount of mathematics needed to 
achieve a good understanding of the central topic addressed by this monograph, 
which is answering the question “Where the biological antimatter is?”   
 
SECTION 1A. THE SCHRÖDINGER EQUATION 
 
The basic difference between a classical and a quantum particle is that there is a 
wave associated with a quantum particle [4]. There is no wave associated with a 
classical particle. Different interpretations of quantum mechanics give different 
answers to the nature of the wave associated with a quantum particle [4,6]. 
Nevertheless, all interpretations of quantum mechanics coincide in that the 
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wavefunction corresponding to the wave associated with a nonrelativistic 
quantum particle is a solution of the Schrödinger equation [4,6]. The one-
dimensional Schrödinger equation for a nonrelativistic quantum particle with 
mass m is given by the following expression [4,6]: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) .                       (1.1) 

 
The solution of this wave equation is the wavefunction ψ that depends on the 
spatial (x) and temporal (t) variables. For simplicity, we discuss here only the 
one-dimensional Schrödinger equation. However, space is tridimensional; 
therefore, a more realistic wave function will depend on three spatial variables 
[4,6]. In Eq. (1.1), V(x) is a potential that only depends on the spatial variable, ℏ = 

h/2π is the reduced Plank constant, and i = √−1 is the imaginary unit. Note that 
m and V are the only properties of the particle and the medium where the particle 
is, respectively, that are explicitly included in the Schrödinger equation. The wave 
associated with a free nonrelativistic quantum particle is a solution of the simplest 
Schrödinger equation possible (V = 0): 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
 𝜓(𝑥, 𝑡).          (1.2) 

 
Looking for stationary solutions of the form: 
 

𝜓(𝑥, 𝑡) = 𝜑(𝑥)𝑇(𝑡) .                                       (1.3) 
 
Substituting Eq. (1.3) in Eq. (1.2) and dividing the result by φT, we obtain: 
 

𝑖ℏ
𝑑

𝑑𝑡
𝑇

𝑇
= −

ℏ2

2𝑚

𝑑2

𝑑𝑥2𝜑

𝜑
.                                                     (1.4) 

 
Both sides of Eq. (1.4) should be equal for all values of x and t. Consequently, 
each side of Eq. (1.4) should be equal to the same constant. Let’s call it for 
convenience E. We will see later that E is an excellent name because, as we will 
find out later, E is the eigenvalue of the eigenequation corresponding to the total 
energy of the particle. In this way we can reduce the task of solving the 
Schrödinger equation, that is an equation in partial derivatives involving second-
order derivatives, to the simpler task of solving a system of the following two 
differential equations: 
 

𝑖ℏ
𝑑

𝑑𝑡
𝑇 = 𝐸𝑇 .                                                     (1.5) 

 

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2 𝜑 = 𝐸𝜑 .                                       (1.6) 

 
For obvious reasons, Equation (1.6) is called the time-independent Schrödinger 
equation [6]. By solving the time-independent Schrödinger equation, we can find 
the eigenfunctions (φ) and the eigenvalues (E) corresponding to the energy of 
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the free nonrelativistic quantum particle. It is easy to check by simple substitution 
on it, that the following function is a solution of Eq. (1.5):  
 

 𝑇(𝑡) = 𝑒−
𝑖

ℏ
𝐸𝑡 .            (1.7) 

 
Consequently, if φ is a solution of the time-independent Schrödinger equation 
(Eq. (1.6)), then the following is a stationary solution of the Schrödinger equation 
(Eq. (1.2)):   
 

𝜓(𝑥, 𝑡) = 𝜑(𝑥)𝑒−
𝑖

ℏ
𝐸𝑡 .                          (1.8) 

 
The simplest way to obtain a reasonably good approximation to the wavefunction 
(φ) of a free quantum particle is assuming that, for some reason, the 
wavefunction associated with the particle is absolutely confined in a very small 
space region [4].  
 
SECTION 1B.  INFINITE ONE-DIMENSIONAL WELL 
 
While the temporal dependence of the stationary solutions of the Schrödinger 
equation is always given by Eq. (1.7), the eigenfunctions (φ) and eigenvalues (E) 
of the Schrödinger equation (Eq. (1.1)) are different for different potentials [4,6]. 
Possibly, the crudest but simplest possible model of a “free” quantum particle is 
then a particle absolutely confined in the open segment 0 < x < L. The wave 
function in such a model should be null in the rest of the line. In particular, ψ(0, t) 
= ψ(L, t) = 0 at all times. This supposes that the particle should be moving in a 
repulsive potential infinitely large in the regions 0 ≤ x and x ≥ L. The simplest of 
such potentials is the so-called infinite one-dimensional well [4,6]: 
 

𝑉(𝑥) =
0, 𝑖𝑓 0 < 𝑥 < 𝐿
+∞,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                         (1.9) 

 
This choice of potential implies that the particle is like a free particle inside of the 
well.  This problem was reduced to solving the following mathematical problem: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2  𝜓(𝑥, 𝑡),    𝑖𝑓 0 < 𝑥 < 𝐿 

𝜓(𝑥, 𝑡) ≡ 0                         ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 .                                  (1.10) 

 
The stationary solutions of Eq. (1.10) are of the form given by Eq. (1.8), where φ 
is a solution of: 
 

 

𝜕2

𝜕𝑥2  𝜑(𝑥, 𝑡) = −𝑘2𝜑,    𝑖𝑓 0 < 𝑥 < 𝐿 

𝜑(𝑥) ≡ 0,     otherwise 
 ,   with  𝑘 =  

√2𝑚𝐸

ℏ
.                    (1.11) 

 
If E ≥ 0, then k ≥ 0; therefore, the general solutions of the time-independent 
Schrödinger equation in Eq. (1.11) are: 
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𝜑(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥) + 𝐵𝑐𝑜𝑠(𝑘𝑥).                                   (1.12) 
 
But: 
 

𝜑(0) = 𝐵 = 0.                                                                                       (1.13) 
 
Thus: 
 

𝜑(𝐿) = 𝐴𝑠𝑖𝑛(𝑘𝐿) ⇒ 𝑘𝑛 =
𝑛𝜋

𝐿
,   with   𝑛 = 1, 2, ….   .                    (1.14) 

 
Therefore, the eigenfunctions and eigenvalues of the time-independent 
Schrödinger equation in Eq. (1.11) are: 
 

𝜑𝑛(𝑥) = 𝐴𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥) ,   and  𝐸𝑛 =

ℏ2𝑘𝑛
2

2𝑚𝐿2 =
ℏ2𝜋2

2𝑚𝐿2 𝑛2 , with 𝑛 = 1, 2, ….         (1.15) 

 
The constant A can be found from the normalization condition [4,6]:  
 

〈𝜑𝑛|𝜑𝑛〉 = 1 = ∫ 𝐴2𝑠𝑖𝑛2 (
𝑛𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0
= 𝐴2𝐿 ⇒ 𝐴 =

1

√𝐿
 .                            (1.16) 

 
Consequently, the stationary solutions of the Schrödinger equation in a one-
dimensional infinite well are:  
 

𝜓𝑛(𝑥, 𝑡) =
1

√𝐿
𝑠𝑖𝑛(𝑘𝑛𝑥)𝑒−

𝑖

ℏ
𝐸𝑛𝑡.                                      (1.17) 

 
We should stop now and discuss the physical meaning of the mathematical 
results that we obtained. We should not get lost in mathematical formalism and 
forget why we were interested in solving Eq. (1.10). We proposed Eq. (1.10) as 
the Schrödinger equation problem corresponding to a simple but crude 
approximation of a quantum particle completely confined in a small space region. 
This is a simple approximation because it is a one-dimensional problem and 
because the infinite well potential is used. It is a crude approach for the same 
reasons. Nevertheless, as will be discussed below, the obtained results can 
explain why Hydrogen atoms are stable and why their spectra are formed by a 
discrete set of bright or dark lines [4].   
 
The only possible values of the energy of the stationary states of a quantum 
particle with mass m that is confined in a small spatial region are given by Eq. 
(1.15). Therefore, the minimum possible energy value is: 
 

 𝐸1 =
ℏ2𝜋2

2𝑚𝐿2 > 0.                                                                                      (1.18) 

 
The existence of a non-null minimum value of the energy means that the spatially 
localized particle cannot lose more energy if it is in its ground state (n = 1). This 
explains the stability of the Hydrogen atom. Moreover, Eq. (1.15) follows that a 
quantum particle with mass m that is confined in a small spatial region must have 
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a discrete frequency spectrum. It should be noted that Eq. (1.15) does not 
correctly predict the experimentally observed spectrum of the Hydrogen atom. 
This could be expected because the electron in the Hydrogen atom is not moving 
in an infinite well potential (Eq. (1.9)) but in the Coulomb potential produced by 
the proton. Nevertheless, it is amazing that both the stability of the Hydrogen 
atoms and the discrete character of their spectra are just consequences of the 
spatial localization of the quantum particle. 
 
It should also be noted that the energy values given by Eq. (1.15) correspond to 
the internal kinetic energy of the quantum particle because V = 0 inside the well. 
For instance, the electron in the Hydrogen atom has a minimum internal kinetic 
energy. In addition, a free Hydrogen atom can realize a translation movement 
with any possible kinetic energy value from a continuum set of positive values.  
 
SECTION 1C.  BOHR RADIUS 
 
The size of the Hydrogen atom can be semi-quantitatively obtained by realizing 
that, in the Hydrogen atom, the electron is approximately trapped in a localized 
spherical region of radius r. Therefore, the Bohr radius (rB) can easily be obtained 
as the value of r that minimizes the sum of the particle-in-a-box kinetic energy 
(Eq. (1.18) with L = r), plus the potential energy of the slow-moving electron in 
the Hydrogen atom [4,10]: 
 

   𝐸𝑆𝑐ℎ(𝑟) ≈
ℏ2

2𝑚𝑒𝑟2 − 
𝑒2

4𝜋𝜖0𝑟
 .                                                                (1.19) 

 
The first term of ESch(r), corresponds to the non-relativistic kinetic energy of the 
ground state of a trapped and slow-moving quantum particle with the electron 
mass (m = me). The second term corresponds to the potential energy associated 
with the Coulombic attraction between a particle, with a charge equal to the 
electron charge (-e), and a positive charge +e placed at r = 0 [5]. ESch(r) has a 
minimum when [4, 10]: 
 

   𝑟 = 𝑟𝐵 =
4𝜋𝜖0ℏ2

𝑚𝑒𝑒2
 =  

1

𝛼
ƛ𝐶  ,   with  ƛ𝐶 =

ℏ

𝑚𝑒𝑐
  and  𝛼 =

𝑒2

4𝜋𝜖0ℏ𝑐
 .     (1.20) 

 
In Eq. (1.20), c is the speed of the light in the vacuum and εo is the dielectric 
constant of the vacuum. Therefore, the size of the Hydrogen atom is 
approximately 1/α ≈ 137 times the electron’s reduced Compton wavelength, 
which confirms the initial slow-moving assumption.  The Bohr radius is small (rB ≈ 
0.05 nm) but is not null. 
___________________________________________________________________________________ 
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The kinetic energy of classical particles is always positive [5]. As discussed in 
Chapter 1, the kinetic energy of nonrelativistic quantum particles with mass (m) is 
always positive too [6]. However, relativistic quantum particles can exist in two 
kinds of quantum states [2,4]. Common quantum states are states like 
nonrelativistic quantum states. In addition, relativistic quantum particles can exist 
in exotic states which are very different than nonrelativistic quantum states. In 
contrast with classical particles and nonrelativistic quantum particles, if a free 
relativistic quantum particle with mass is in an exotic state, then its kinetic energy 
has a negative value [4].  
 
The quantum states that are solutions of relativistic (Lorentz’s covariant) wave 
equations can be grouped into two branches [2,4]. In the first branch, referred 
from this point on as the common branch, the total relativistic energy of the 
quantum particle is ET = E + mc2.  In the other branch, referred to from this point 
on, as the exotic branch, the total energy of the quantum particle is ET = E' - mc2. 
The apostrophe (') attached to the variable representing a magnitude will be used 
to exemplify the magnitude in an exotic quantum state.  
 
In relativistic quantum mechanics, there is an antiparticle associated with each 
elemental particle. The associated particle and the antiparticle have the same 
mass and charges of equal magnitude. On the contrary, the associated particle 
and antiparticle have charges with opposite signs. For instance, a positron is the 
antiparticle associated with the electron. As will be discussed below, there is a 
close relationship between the antiparticle common states with ETa = Ea + mc2 
and the particle exotic states with ET = E' - mc2 [2,4]. 
 
SECTION 2A. SPECIAL RELATIVITY THEORY 
 
The special theory of relativity was developed in 1905 by Albert Einstein 
considering only the existence of classical particles [7]. In special relativity 
theory, free particles have constant mass m > 0 and kinetic energy K ≥ 0. The 
relationship between the total energy (ET) and the linear momentum of a 
relativistic free particle is given by the following equation [4,7]: 
 

𝐸𝑇
2 = 𝑝2𝑐2 + 𝑚2𝑐4,   with   𝑝2 = 𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2 .                              (2.1) 

 
Or: 

𝐸𝑇 = ±√𝑝2𝑐2 + 𝑚2𝑐4.                                      (2.2) 
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For classical particles the + sign in Eq. (2.2) must be taken; therefore: 
 

𝐸𝑇 = √𝑝2𝑐2 + 𝑚2𝑐4.                                                     (2.3) 

 
From Eq. (2.3), it follows when p = 0, then:   
 

𝐸𝑇 = 𝐸𝑚 = 𝑚𝑐2.                                       (2.4) 
 

There is then an energy (Em = mc2) associated with the mass of a relativistic 
particle. Consequently: 
 

𝐸𝑇 = 𝐸 + 𝑚𝑐2,   with  𝐸 = 𝐾.                                 (2.5) 
 
Substituting ET with K + mc2 in Eq. (2.3), we obtain: 
 

𝐾 + 𝑚𝑐2 = √𝑝2𝑐2 + 𝑚2𝑐4 = 𝛾𝑚𝑐2,   with  𝛾 =  √1 +
𝑝2

𝑚2𝑐2
 ≥ 1.       (2.6) 

 
Note that Eq. (2.6) gives an alternative formula for the Lorentz factor. This is 
because substituting in Eq. (2.6) p by γmv, which is the equation corresponding 
to the relativistic linear momentum of a relativistic particle with mass m and 
speed v, we obtain the customary definition of the Lorentz factor [7]: 
 

𝛾 = √1 + 𝛾2 v2

𝑐2   ⇒  𝛾 =
1

√1−
v2

𝑐2

  .                   (2.7) 

 
 From Eq. (2.6), we obtain the kinetic energy of a relativistic free particle is given 
by:  
 

𝐾 = (𝛾 − 1)𝑚𝑐2 ≥ 0.           (2.8) 
 
Substituting Eq. (2.8) in Eq. (2.5), we obtain the following equations of:  
 

𝐸𝑇 = 𝛾𝑚𝑐2.                           (2.9) 
 
Along with:  
 

𝐾 = 𝐸 = (𝛾 − 1)𝑚𝑐2.                    (2.10) 
 

From Eq. (2.10), we obtain another very useful alternative formula for γ for a 
relativistic free particle [4]:  
 

𝛾 = 1 +
𝐾

𝑚𝑐2 .                                 (2.11) 

 

Note that γ ≥ 1 in Eq. (2.11) because for a classical free particle E = K ≥ 0. An 
unfamiliar but particularly useful alternative equation for K can be obtained from 
Eq. (2.6): 
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𝛾2 =  1 +
𝑝2

𝑚2𝑐2.          (2.12) 

 
Therefore: 
 

(𝛾 + 1)(𝛾 − 1)𝑚𝑐2 =
𝑝2

𝑚
.                                    (2.13) 

 
Thus [4]: 
 

(𝛾 − 1)𝑚𝑐2 = 𝐾 =
𝑝2

(𝛾+1)𝑚
 .                 (2.14) 

 
Note that for classical particles γ ≈ 1 in the nonrelativistic limit; thus, this limit K 
and p are given by the nonrelativistic formulas [5]: 
 

𝐾 =
𝑝2

2𝑚
 ,   with  𝑝 = 𝑚v.                       (2.15) 

 
As it will be shown later, it is useful to introduce the concept of the effective 
relativistic mass of a free particle as [4]: 
 

µ =
1+𝛾

2
𝑚 ≥ 𝑚,   with  𝛾 = 1 +

𝐾

𝑚𝑐2 .                                 (2.16) 

 
Thus: 
 

µ = (1 +
𝐾

2𝑚𝑐2
) 𝑚 ≥ 𝑚 .                                (2.17) 

 
Using Eqs. (2.17) and (2.16), Eq. (2.14) can be rewritten as [4, 8-10]: 
 

𝐾 =
𝑝2

2𝜇
≥ 0.                                   (2.18) 

 
In this monograph, Eq. (2.16) to (2.18) are the more important relativistic 
equations valid for free classical particles. 
 
SECTION 2B. INTRODUCING SPECIAL RELATIVITY IN QUANTUM 
MECHANICS 
 
In contrast to classical particles, a free relativistic quantum particle in exotic 
states can have Kꞌ < 0 [2, 4]. Nevertheless, free relativistic quantum particles can 
also exist in common quantum states where ET = E + mc2 and the particle has K 
> 0. For these common states, all the formulas discussed in Section 2.1 for 
classical particles are valid for a free relativistic quantum particle. 
 
In addition to quantum states where the free relativistic quantum particle has K > 
0, a free relativistic quantum particle can be in other exotic quantum states where 
ET = E' - mc2. In contrast with classical particles, free relativistic quantum 
particles in these exotic states have kinetic energy Kꞌ < 0. For these exotic states, 
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the formulas discussed above should be modified. The special theory of relativity 
was developed by Albert Einstein for classical particles. Therefore, we must be 
careful in extrapolating the valid results for classical particles to relativistic 
quantum particles in exotic states where ET = E' - mc2 [4].  
 
There exist particles and antiparticles in Mother Nature. An antiparticle is a 
particle that has the same mass as the associated particle but contains an 
opposite charge. For instance, the positron is the antiparticle of the electron. 
Although they have the same mass, the positron and electron electric charges 
are e and –e, respectively. According to Dirac’s Hole Theory, the existence of a 
hole in Dirac’s Sea means there exists an unoccupied exotic quantum state of a 
free quantum particle with total energy ET = E' - mc2 [2, 4]. This hole is perceived 
as an antiparticle moving with total energy ETa = Ea + mc2 and Ea = -Eꞌ. 
Consequently, due to the relation of Ea = -Eꞌ, we can start by obtaining the 
relativistic equations that are valid for the free antiparticle in the common states 
with ETa = Ea + mc2. After they are found and known, the relativistic equations 
valid for the exotic quantum states of the corresponding particle can be deducted 
from them [4]. 
 
An antiparticle is also a “particle” that is always experimentally observed with 
positive values of its kinetic energies (Ka > 0). Consequently, all the equations 
obtained in Section 2.1 for a free classical particle are also valid for a free 
antiparticle in a common quantum state. This means that Eq. (2.16) to (2.18) 
should be rewritten for an antiparticle in a common state in the following way [4]: 
 

𝐾𝑎 =
𝑝2

2𝜇𝑎
,   with  𝜇𝑎 = (

𝛾𝑎+1

2
) 𝑚 = [1 +

𝐾𝑎

2𝑚𝑐2] 𝑚.                                   (2.19) 

 
For a free antiparticle with ETa = Ea + mc2, Eqs. (2.1) is also valid. Therefore: 
 

𝐸𝑇𝑎
2 = 𝑝2𝑐2 + 𝑚2𝑐4 ,    with    𝑝2 = 𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2 .                       (2.20) 
 

Or: 
 

𝐸𝑇𝑎 = 𝐸𝑎 + 𝑚𝑐2 = √𝑝2𝑐2 + 𝑚2𝑐4.                       (2.21) 
 

Using the relation E' = -Ea, we obtain: 
 

−𝐸𝑇𝑎 = −𝐸𝑎 − 𝑚𝑐2 = 𝐸′ − 𝑚𝑐2 = 𝐸𝑇 = −√𝑝2𝑐2 + 𝑚2𝑐4 .                     (2.22) 

 
Therefore, if the free particle is in an exotic state with ET = E' - mc2, from Eqs. 
(2.21) and (2.22) follow when p = 0 that:   
 

𝐸𝑇 = −𝐸𝑇𝑎 = −𝐸𝑚 = −𝑚𝑐2 .                      (2.23) 
 

Therefore, mc2 is the absolute minimum value of ET, if a free relativistic quantum 
particle is in a common state where ET = E + mc2 (Eq. (2.4)). However, -mc2 is 
the absolute maximum value of ET, if a free relativistic quantum particle is in an 
exotic state where ET = E' - mc2 [4].  
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As expected, from equation (2.22) follows that a free antiparticle in a common 
state satisfices Eq. (2.5): 
 

𝐸𝑇𝑎 = 𝐸𝑎 + 𝑚𝑐2 , with 𝐸𝑎 =  𝐾𝑎 .                        (2.24) 
 
Thus, in the exotic states the following equation is valid: 
 

𝐸𝑇 = −𝐸𝑇𝑎 = −(𝐸𝑎 + 𝑚𝑐2) = −𝐾𝑎 − 𝑚𝑐2 .                    (2.25) 
 

We can rewrite Eq. (2.25) as: 
 

𝐸𝑇 = 𝐸′ − 𝑚𝑐2 ,   with  𝐸′ = 𝐾′ = −𝐸𝑎 ,   and  𝐾′ = −𝐾𝑎 .      (2.26) 
 
Therefore, a free relativistic quantum particle has a value of E = K >0 in a 
common state where ET = E + mc2 (Eq. (2.5)). However, Eꞌ = Kꞌ = - Ka < 0 in an 
exotic state where ET = E' - mc2.  
 
Also, as expected for a free antiparticle in a common site, by substituting ETa by 
Ka + mc2 in (2.21) we obtain the same equation that is valid for the corresponding 
free particle in a common state (Eq. (2.6)): 
 

𝐾𝑎 + 𝑚𝑐2 = √𝑝2𝑐2 + 𝑚2𝑐4 = 𝛾𝑎𝑚𝑐2,   𝑤𝑖𝑡ℎ  𝛾𝑎 =  √1 +
𝑝𝑎

2

𝑚2𝑐2  ≥ 1.        (2.27) 

 
From Eqs. (2.26) and (2.27), we obtain [4]:  
 

𝐾𝑎 = (𝛾𝑎 − 1)𝑚𝑐2 = −𝐾′.                                                  (2.28) 
 
Substituting Ka given by Eq. (2.27) in Eq. (2.25), we obtain the following 
equations:  
 

𝐸𝑇𝑎 = 𝛾𝑎𝑚𝑐2 .                                          (2.29) 
 
And:  
 

𝐸𝑎 = 𝐾𝑎 = (𝛾𝑎 − 1)𝑚𝑐2 .                       (2.30) 
 
As expected, Eqs. (2.29) and (2.30) for a free antiparticle in a common state 
match Eqs. (2.9) and (2.8), respectively, for a free relativistic quantum particle in 
a common state. Also, from Eq. (2.30), we obtain an alternative formula for γa:  
 

𝛾𝑎 = 1 +
𝐾𝑎

𝑚𝑐2.                                    (2.31) 

 
Note that γa > 1 in Eq. (2.31) when Ka > 0. Also, for free particles and 
antiparticles in common states γa = γ, with γ given by Eq. (2.11). 
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We are interested in obtaining equations valid for a free relativistic quantum 
particle in an exotic state. We want to obtain these equations from the equations 
valid for the corresponding free antiparticle in a common state. If we substitute Kꞌ 
given by Eq. (2.28) in Eq. (2.26), we obtain the following equations for a free 
relativistic quantum particle in an exotic state [4]:  
 

𝐸𝑇 = −𝛾𝑎𝑚𝑐2 = 𝛾′𝑚𝑐2.                                    (2.32) 
 
And:  
 

𝐸′ = 𝐾′ = (𝛾′ + 1)𝑚𝑐2.                       (2.33) 
 
From Eq. (2.33), we obtain a formula for γꞌ:  
 

𝛾′ = −1 +
𝐾′

𝑚𝑐2
                                                (2.34) 

 
Note that in Equation (2.32) we defined γꞌ = -γa as the Lorentz factor 
corresponding to a free relativistic quantum particle in an exotic state where ET = 
E' - mc2. In contrast with the Lorentz factor for free classical particles, γꞌ < -1 
because γa > 1.  
 
Also, due to γꞌ = -γa, Eq. (2.12) is also valid for γꞌ, thus: 
 

(𝛾′ − 1)(𝛾′ + 1)𝑚𝑐2 =
𝑝2

𝑚
.                                    (2.35) 

 
From Eqs. (2.33) and (2.35), we obtain [4]: 
 

𝐾′ =
𝑝2

(𝛾′−1)𝑚
=

𝑝2

2𝜇′ ,   with  𝜇′ = (
𝛾′−1

2
) 𝑚 = (−1 +

𝐾′

𝑚𝑐2
) 𝑚.      (2.36) 

 
We have then obtained similar kinetic energy equations, K = p2/2μ (Eq. (2.18)) 
and Kꞌ = p2/2μꞌ. These equations are valid for both kinds of quantum states. 
However, the effective relativistic masses μ (Eq. (2.17)) and μꞌ are different. The 
equations relating μ and γ (Eq. (2.16)) are also different than the equations 
relating μꞌ and γꞌ (Eq. (2.36)). Also, due to the relation of Ea = -Eꞌ, it follows that 
for a free quantum particle -μꞌ = μa (Eqs. (2.36) and (2.19)). 
 
In summary, if a free relativistic quantum particle is in a common state, then Eq. 
(2.16) to (2.18) are the more important relativistic equations. However, if a free 
relativistic quantum particle is in a exotic state, then these equations should be 
substituted by Eqs. (2.34) and (2.36). This is also valid for free antiparticles.  
 
It should be noted that in Sections 2.a and 2.b, the focus has been put on free 
quantum particles. This is because this monograph is based on the simplest 
model of a localized quantum particle, the infinite well [4]. The quantum particle is 
free inside of the infinite well because V = 0 there. 
 



 
 
 

Where the Biological Antimatter is? 
The Simplest Model of a Spatially Confined Relativistic Quantum Particle 

 
 

 

 
15 

 

SECTION 2C. GRAVE DE PERALTA EQUATIONS 
 
The mass is the only feature of a free quantum particle present in the 
Schrödinger equation (Eq. (1.2)). This suggests the unconventional idea that it is 
possible to obtain two Schrödinger-like but relativistic equations just by 
substituting the mass of the particle (m) in the Schrödinger equation by the 
effective relativistic masses of the quantum particle in the common (µ) and exotic 
(µꞌ) states. This formal substitution results in the so-called Grave de Peralta 
equations for a free relativistic quantum particle [4, 8-10]: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝛹 = −

ℏ2

2µ

𝜕2

𝜕𝑥2
𝛹,   with 𝜇 = (1 +

𝐾

2𝑚𝑐2
) 𝑚.       (2.37) 

 
And 
 

𝑖ℏ
𝜕

𝜕𝑡
𝛺 = −

ℏ2

2𝜇′
∇2𝛺,   with µ′ = (−1 +

𝐾′

2𝑚𝑐2
) 𝑚.                     (2.38) 

 
If a free relativistic particle is in a common state with energy ET = E + mc2, then 
Eq. (2.37) is valid. If a free relativistic particle is in an exotic state with energy ET 
= E' - mc2, then Eq. (2.38) is valid. A general discussion about the Grave de 
Peralta equations could be found elsewhere [4]. Here, it is shown below an 
intuitive but precise way for obtaining these relativistic equations, which is based 
on using a first quantization procedure [2, 4, 6, 8-10]. 
   
For instance, the Schrödinger equation for a free quantum particle can be 
obtained from the following nonrelativistic classical mechanic equation (Eq. 
(2.15)):  
 

  𝐸𝑇 = 𝐾 =
𝑝2

2𝑚
 ,   with  𝑝 = 𝑚v.                      (2.39) 

 
The first quantization procedure consists of changing the total energy of the 
particle (ET) and its linear momentum (p) in Eq. (2.39) by the corresponding 
quantum operators [4, 6]: 
 

𝐸𝑇 → 𝐻̂ = 𝑖ℏ
𝜕

𝜕𝑡
 ,   and  𝐾 → 𝐾̂ =

𝑝̂2

2𝑚
  with  𝑝̂ = −𝑖ℏ

𝜕

𝜕𝑥
 .       (2.40) 

 
This procedure allows for formally obtaining Eq. (1.2). Similarly, the Grave de 
Peralta equations can be obtained using Eqs. (2.18) and (2.36). From Eqs. (2.5) 
and (2.18) follow the following equation for a free relativistic quantum particle in a 
common state: 
 

𝐸𝑇 = 𝐾 + 𝑚𝑐2 , with  𝐾 =
1

2𝜇
𝑝2, and  𝜇 = (1 +

𝐾

2𝑚𝑐2
) 𝑚 .      (2.41) 

 
Note that K > 0 and μ > m. Making in Eq. (2.41) the formal first quantization 
substitutions given by Eq. (2.40), we obtain [4, 8-10]:  
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𝐻̂𝜙 = (𝐾̂ + 𝑚𝑐2)𝜙 ⇔ 𝑖ℏ
𝜕

𝜕𝑡
𝜙 = −

ℏ2

2𝜇

𝜕2

𝜕𝑥2 𝜙 + 𝑚𝑐2𝜙.      (2.42) 

 
Equation (2.42) resembles the one-dimensional Schrödinger equation for a free 
quantum particle. This similarity can be improved by introducing a new 
wavefunction:   
 

𝛹 = 𝜙𝑒𝑖
𝑚𝑐2

ℏ
𝑡.                        (2.43) 

 
Note that both wavefunctions represent the same probability density ρ = |Ψ|2 = 
|ϕ|2. Finally, Eq. (2.37) can be obtained by substituting ϕ given by Eq. (2.43) in 
Eq. (2.42).  
 
Alternatively, from Eqs. (2.26) and (2.36) follows the following equation for a free 
relativistic quantum particle in an exotic state [4]: 
 

𝐸𝑇 = 𝐾′ − 𝑚𝑐2, with  𝐾′ =
1

2µ′ 𝑝2, and  µ′ = (−1 +
𝐾′

2𝑚𝑐2
) 𝑚 .     (2.44) 

 

Note that Kꞌ < 0 but µꞌ < -1. As discussed in Sections 2.a and 2.b, Eq. (2.44) is 
not a proper equation in special relativity theory because this theory was 
developed for classical particles with m > 0 and K ≥ 0.  Nevertheless, we can 
obtain Eq. (2.38) by making in Eq. (2.44) the formal first quantization 
substitutions given by Eq. (2.40):  
 

𝐻̂𝛴 = (𝐾 ′̂ − 𝑚𝑐2)𝛴 ⇔ 𝑖ℏ
𝜕

𝜕𝑡
𝛴 = −

ℏ2

2𝜇

𝜕2

𝜕𝑥2
𝛴 − 𝑚𝑐2𝛴.                    (2.45) 

 

Equation (2.45) also resembles the one-dimensional Schrödinger equation for a 
free quantum particle. This similarity can be improved by introducing a new 
wavefunction:   
 

𝛴 = 𝛺𝑒−𝑖
𝑚𝑐2

ℏ
𝑡.          (2.46) 

 

Note that both wavefunctions represent the same probability density ρ = |𝛴|2 = 

|Ω|2. Finally, Eq. (2.38) can be obtained by substituting 𝛴 given by Eq. (2.46) in 
Eq. (2.45).  
 

The pair of Grave de Peralta equations is equivalent to the well-known Klein-
Gordon equation for a free spinless quantum particle with mass [2, 4]. This 
means that the solutions of the Klein-Gordon equation with ET = K + mc2 can be 
found by solving Eq. (2.37). Also, the solutions of the Klein-Gordon equation with 
ET = K' - mc2 can be found by solving Eq. (2.38). This can be easily demonstrated 
[4].  
 

The time-independent equation corresponding to Eq. (2.37) is: 
 

−
ℏ2

2µ

𝜕2

𝜕𝑥2 𝜑 = 𝐸𝜑,   with µ = (1 +
𝐸

2𝑚𝑐2
) 𝑚 > 𝑚, and  𝐸 = 𝐾.     (2.47)   
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By pre-multiplying both sides of the Equation (2.47) by μ/m, substituting μ with 
his value in Equation (2.47) into the resulting equation, and after some algebraic 
manipulation, we obtain [4]: 
 

−
ℏ2

2𝑚

𝜕2

𝜕𝑥2
𝜑 = (𝐸 +

𝐸2

2𝑚𝑐2
) 𝜑.                       (2.48) 

 
We can also arrive at Eq. (2.48) but from starting from the one-dimensional Klein-
Gordon equation for a free spinless particle with mass [2, 4]:  
 

(𝑖ℏ
𝜕

𝜕𝑡
)

2
𝜓𝐾𝐺 = −ℏ2𝑐2 𝜕2

𝜕𝑥2 𝜓𝐾𝐺 + 𝑚2𝑐4𝜓𝐾𝐺 .                               (2.49) 

 
We can obtain the time-independent Klein-Gordon equation corresponding to Eq. 
(2.49) by looking for stationary solutions of the form: 
 

𝜓𝐾𝐺(𝑟, 𝑡) = 𝜑𝐾𝐺(𝑟)𝑒−
𝑖

ℏ
𝐸𝑇𝑡 .                       (2.50) 

 
Substituting Eq. (2.50) in Eq. (2.49), and after several algebraic manipulations, 
we obtain the time-independent one-dimensional Klein-Gordon equation [2, 4]: 
 

−ℏ2𝑐2 𝜕2

𝜕𝑥2
𝜑𝐾𝐺 = (𝐸𝑇

2 − 𝑚2𝑐4)𝜑𝐾𝐺  .                      (2.51) 

 
Then, substituting ET by E + mc2, and after some algebraic manipulations, we 
obtain [4]: 
 

−ℏ2𝑐2 𝜕2

𝜕𝑥2
𝜑𝐾𝐺 = 2𝑚𝑐2 (𝐸 +

𝐸2

2𝑚𝑐2
) 𝜑𝐾𝐺 .                                   (2.52) 

 
Then, after dividing by 2mc2 on both sides of Eq. (2.52), we obtain Eq. (2.48). We 
have then demonstrated that by solving either Eq. (2.37) or Eq. (2.49), we could 
obtain the energies (E = K) and wavefunctions (φ) corresponding to a free 
spinless relativistic quantum particle with mass containing a total energy ET = E + 
mc2. Note that this demonstration requires substituting ET by E + mc2 in Eq. 
(2.51).  
 
In a similar way, the time-independent equation corresponding to Eq. (2.38) is: 
 

−
ℏ2

2µ′

𝜕2

𝜕𝑥2
𝜗 = 𝐸′𝜗,   with µ′ = (−1 +

𝐸′

2𝑚𝑐2
) 𝑚 > 𝑚, and  𝐸′ = 𝐾′.     (2.53)  

   
By pre-multiplying both sides of the Equation (2.53) by µꞌ /m, substituting µꞌ with 
his value in Equation (2.53) into the resulting equation, and after some algebraic 
manipulation, we obtain [4]: 
 

−
ℏ2

2𝑚

𝜕2

𝜕𝑥2 𝜗 = [𝐸′ −
(𝐸′)2

2𝑚𝑐2] 𝜗.                       (2.54) 
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We can also arrive at Eq. (2.54) but from starting from the time-independent one-
dimensional Klein-Gordon equation for a free spinless particle with mass (Eq. 
2.51). After substituting ET by E' - mc2, and after some algebraic manipulations, 
we obtain [4]: 
 

−ℏ2𝑐2 𝜕2

𝜕𝑥2
𝜑𝐾𝐺 = 2𝑚𝑐2 [𝐸′ −

(𝐸′)2

2𝑚𝑐2
] 𝜑𝐾𝐺 .                      (2.55) 

 
Then, after dividing by 2mc2 on both sides of Eq. (2.55), we obtain Eq. (2.54). We 
have then demonstrated that by solving either Eq. (2.38) or Eq. (2.49), we could 

obtain the energies (E' = K') and wavefunctions (𝜗) corresponding to a free 
spinless relativistic quantum particle with mass containing a total energy ET = E' - 
mc2. Note that this demonstration requires substituting ET by E' - mc2 in Eq. 
(2.54).  
 
We need to solve just one Schrödinger equation for describing the quantum field 
associated to a nonrelativistic quantum particle, but we must solve two 
Schrödinger-like equations (Eqs. (2.37) and (2.38)) for a full description of the 
quantum field associated to a relativistic quantum particle. This fact can be 
summarized in the following colorful way:  
 
There is no wave associated with a classical particle and a wave associated with 
a nonrelativistic quantum particle with mass. However, there are two waves 
associated with a relativistic quantum particle with mass. If the particle is in a 
common quantum state, its total energy is ET = E + mc2, but it is ET = E' - mc2 if 
the particle is in an exotic quantum state. 
 
SECTION 2D. A RELATIVISTIC QUANTUM PARTICLE IN THE ONE-
DIMENSIONAL INFINITE WELL 
 
The kinetic energy of a nonrelativistic quantum particle trapped in an infinite well 
increases when the size of the well (L) decreases (Eq. (1.15)). Eventually, if the 
size of the well is too small, then K ≈ mc2 and the problem of a quantum particle 
confined in an infinite well transforms itself into a relativistic problem. Strictly, due 
to the possibility of the creation of particle-antiparticle pairs when K > 2mc2, it is 
questionable that relativistic quantum particles could be confined in a very small 
region of space [4]. Nevertheless, for simplicity in a first approximation to a 
relativistic extension of the discussions made in Section 1.b, we could disregard 
the effects related to the creation of particle-antiparticle pairs. 
 
If a free relativistic quantum particle could be absolutely confined in a small 
spatial region, then the wavefunctions of the free relativistic quantum particle in 
the common and exotic quantum states could be found solving problems very 
similar to Eq. (1.10) [4]: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

2𝜇

𝜕2

𝜕𝑥2  𝜓(𝑥, 𝑡),    𝑖𝑓 0 < 𝑥 < 𝐿 

𝜓(𝑥, 𝑡) ≡ 0                         ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 .                     (2.56) 
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And 
 

𝑖ℏ
𝜕

𝜕𝑡
𝛺(𝑥, 𝑡) = −

ℏ2

2µ′

𝜕2

𝜕𝑥2
 𝛺(𝑥, 𝑡),    𝑖𝑓 0 < 𝑥 < 𝐿 

𝜓(𝑥, 𝑡) ≡ 0                         ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 .                     (2.57) 

 
If a free relativistic particle is in a common state with energy ET = E + mc2, then 
we should solve Eq. (2.56). If a free relativistic particle is in an exotic state with 
energy ET = E' - mc2, then we should solve Eq. (2.57). Conveniently, Eqs. (2.56) 
and (2.57) can be obtained from Eq. (1.10) after substituting m by μ and µꞌ, 
respectively. This suggests that we can solve Eq. (2.56) as Eq. (1.10) was solved 
in Section 1.b. Moreover, for finding the possible values of K and Kꞌ, we only 
need to find the values of K because Kꞌ = -K. 
 
We are now prepared to find out what happens to a relativistic quantum particle 
when it is trapped in a small spatial region, and the particle is in a common 
quantum state. Solving Eq. (2.56) provides a crude, but simple mathematical 
model for this riveting physical situation. As discussed above in Section 1.b, the 
spatial part and the energies of the corresponding stationary states are solutions 
of the following mathematical problem [4, 8-10]: 
 

𝜕2

𝜕𝑥2 𝜑 = −𝑘2𝜑,    𝑖𝑓 0 ≤ 𝑥 ≤ 𝐿 

𝜑(𝑥) ≡ 0,     otherwise 
 ,   with  𝑘 =  

√2𝜇𝐸

ℏ
.                                   (2.58) 

 
Note that the relativistic quantum particle is free inside the well; therefore, E = K 
and µ given by Eq. (2.37) are constant inside of the well. In the non-relativistic 
limit, E << mc2, so µ ≈ m. Therefore, in the non-relativistic limit, Eq. (2.58) 
reduces to the Eq. (1.11) that was solved in the previous Section 1.a. From Eqs. 
(2.58) and (2.37) follow that inside of the infinite well, µ ≥ m and k > 0 are 
constants for a given value of E > 0. For that reason, the stationary solutions of 
Eq. (2.58) are given by the following expression [4, 8-10]: 
 

𝛹𝑛(𝑥, 𝑡) = √
2

𝐿
𝑠𝑖𝑛(𝑘𝑛𝑥)𝑒−

𝑖

ℏ
𝐸𝑛

(𝑟𝑒𝑙)
𝑡,   with 𝑘𝑛 =

𝑛𝜋

𝐿
,   and   𝑛 = 1, 2, …             (2.59)  

 
For the relativistic quantum particle, the energies depend on kn and µ as En in 
Eq. (1.15) depends on kn and m:   
 

𝐸𝑛
(𝑟𝑒𝑙)

=
ℏ2𝑘𝑛

2

2𝜇𝐿2 =
ℏ2𝜋2

2𝜇𝐿2 𝑛2.                                                                                              (2.60)  

 
Equations (2.60) and (2.37) form the following system of two equations with two 
variables:  
 

𝐸𝑛
(𝑟𝑒𝑙)

=
ℏ2𝜋2𝑛2

2𝜇𝑛𝐿2 , 𝜇𝑛 = (1 +
𝐸𝑛

(𝑟𝑒𝑙)

2𝑚𝑐2) 𝑚 .           (2.61)  
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Therefore: 
 

ℏ2𝜋2𝑛2

2𝜇𝑛𝐿2
= 2 (

𝜇𝑛

𝑚
− 1) 𝑚𝑐2  ⇔  𝜇𝑛

2 − 𝑚𝜇𝑛 −
ℏ2𝜋2𝑛2

4𝑐2𝐿2
= 0.          (2.62)  

 

Due to E = K > 0, we should require that µn ≥ m. With that being said, the 
solutions of Eq. (2.62) are [4, 8-10]: 
 

𝜇𝑛 =
1

2
(1 + √1 +

ℏ2𝜋2𝑛2

𝑚2𝑐2𝐿2
 ) 𝑚 =

1

2
(1 + √1 +

𝑛2

4
(

𝜆𝐶

𝐿
)

2

 ) 𝑚 ,   with 𝜆𝐶 =
ℎ

𝑚𝑐
 .             (2.63)  

 

Therefore: 
 

𝛾𝑛 =
2𝜇𝑛

𝑚
− 1 = √1 +

𝑛2

4
(

𝜆𝐶

𝐿
)

2

> 1.                                      (2.64)  

 

In Eqs. (2.63) and (2.64), λC is the Compton wavelength associated with a 
particle of mass m. So, if the particle is in the ground state (n = 1), then the 
nonrelativistic limit occurs (γ ≈ 1 and µn ≈ m) when L >> λC. The particle travels 
faster (γ increases) when the spatial confinement increases; that is when the 
width of the well (L) decreases. Substituting μ given by Eq. (2.63) in Eq. (2.61), 
we obtain [4, 8-10]: 
 

𝐸𝑛
(𝑟𝑒𝑙)

=
ℏ2𝜋2𝑛2

(1+𝛾𝑛 )𝑚𝐿2 =   
ℏ2𝜋2𝑛2

(1+√1+
𝑛2

4
(

𝜆𝐶
𝐿

)
2

 )𝑚𝐿2

  .                                        (2.65)  

 

In the non-relativistic limit (n small, L >> λC), Eq. (2.65) coincides with Eq. (1.15). 
If L ≈ λC/2, then Eq. (2.65) reduces to: 
 

𝐸𝑛
(𝑟𝑒𝑙)

=
ℏ2𝜋2𝑛2

(1+√1+𝑛2 )𝑚𝐿2
 .                                      (2.66)  

 

The minimum value of Eq. (2.66) is: 
 

𝐸𝑛
(𝑟𝑒𝑙)

=
ℏ2𝜋2

(1+√2 )𝑚𝐿2
> 0.                                                                          (2.67)  

 

The ratio between the energies given by Eqs. (2.66) and (1.15) is: 
 

𝐸𝑛
(𝑟𝑒𝑙)

𝐸𝑛
 =

2

(1+√1+𝑛2 )
 .                                                                                 (2.68)  

 

Consequently, when the particle moves faster (n increases), the energy of the 
highly confined particle decreases in comparison with the nonrelativistic energy 
value.   
 

A more notable difference exists in the energy difference between consecutive 
energy levels (ΔE = En+1 - En) at the nonrelativistic and ultra-relativistic limits. At 
the nonrelativistic limit: 
 

∆𝐸𝑛 =
ℏ2𝜋2

2𝑚𝐿2
[(𝑛 + 1)2 − 𝑛2] =

ℏ2𝜋2

2𝑚𝐿2
(2𝑛 + 1).                                        (2.69) 
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Therefore, ΔE increases as n increases at the nonrelativistic limit. However, 
using Eq. (2.67) for estimating ΔE at the ultra-relativistic limit (n >> 1), we obtain: 
 

∆𝐸𝑛 =
ℏ2𝜋2

𝑚𝐿2
[(𝑛 + 1) − 𝑛] =

ℏ2𝜋2

𝑚𝐿2
.                                        (2.70)  

 
Therefore, ΔE is constant at the ultra-relativistic limit.   
 
Finally, due to the relationship Kꞌ = -K, inside an infinite one-dimensional well, if 
the free relativistic particle with mass is in an exotic state, then its kinetic 
energies satisfice the following equation: 
 

𝐸𝑛
(𝑒𝑥)

= −𝐸𝑛
(𝑟𝑒𝑙)

= −
ℏ2𝜋2𝑛2

(1+√1+𝑛2 )𝑚𝐿2
 .                                        (2.71)  

 
The maximum value of Eq. (2.71) is: 
 

𝐸𝑛
(𝑒𝑥)

= −
ℏ2𝜋2

(1+√2 )𝑚𝐿2 < 0.                                        (2.72)  

 

 
 

Fig. 2.1. Schematic of some kinetic energy values of a (discontinuous) non-
relativistic and (continuous) relativistic quantum particle with mass in a 

one-dimensional infinite well 
 
The schematic in Fig. 2.1 shows a comparison between some energy values of 
the stationary states of a (discontinuous) nonrelativistic and (continuous) 
relativistic quantum particle with mass m confined in a one-dimensional infinite 
well. Note that there are pairs of quantum states with total energies ET = Kn + mc2 

and ET = - (Kn + mc2) associated with a spatially confined relativistic quantum 
particle. Also, note that the non-relativist values of Kn (Eq. (1.15)) are larger than 
the corresponding values of Kn (same value of n) for the relativistic particle in a 
common quantum state (Eq. (2.66)). 
___________________________________________________________________________________ 
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There is no doubt about the existence of numerous quantum particles that 
interact with themselves. For instance, the Hydrogen atom exists because there 
is an electromagnetic interaction between the electron and the proton forming it. 
As discussed in Section 1.c, we could use a simple approach (Eq. (1.19)) to 
obtain satisfactory quantitative responses about some properties of quantum 
particles. Equation (1.19) is not a wave equation, but an approximate function 
given the total energy of the electron in the Hydrogen atom. The total energy is 
estimated as equal to the sum of the kinetic energy of a nonrelativistic quantum 
particle with mass trapped in a one-dimensional infinite well (Eq. (1.15)) plus the 
potential energy of the electron due to its Coulombic interaction with the proton. 
The Bohr radius was obtained by finding a local minimum of the function given by 
Eq. (1.19). The success of the obtained result justifies the use of this simple 
approach instead of trying to solve the corresponding wave equation, which may 
be a more formidable mathematical problem.  
 
SECTION 3A. NUMBER OF ELEMENTS IN THE PERIODIC TABLE 
 
A Hydrogen-like atom with atomic number Z is formed by a nucleus with positive 
charge +Ze and one electron. We could use the same approximated approach 
discussed in Section 1.c for obtaining a crude estimate of the size (radius) of a 
Hydrogen-like atom. Assuming that the electron is a nonrelativistic particle, this 
radius (rZ) can easily be obtained as the value of r that minimizes the following 
function [4, 10]: 
 

 𝐸𝑆𝑐ℎ(𝑟) ≈
ℏ2

2𝑚𝑒𝑟2
−  

𝑍𝑒2

4𝜋𝜖0𝑟
 .              (3.1) 

 
The first term of ESch(r), corresponds to the nonrelativistic kinetic energy of the 
ground state of a trapped and slow-moving particle with the electron mass (m = 
me). The second term corresponds to the potential energy associated with the 
Coulombic attraction between a particle, with a charge equal to the electron 
charge (-e), and a positive charge +Ze placed at r = 0. The potential energy is 
negative due to the attractive interaction between the electron and the nucleus. 
ESch(r) has a minimum when [4, 10]: 
 

 𝑟 = 𝑎 =
4𝜋𝜖0ℏ2

𝑚𝑒𝑍𝑒2  =  
𝑟𝐵

𝑍
=

1

𝛼𝑍
ƛ𝐶  , with ƛ𝐶 =

ℏ

𝑚𝑒𝑐
 and 𝛼 =

𝑒2

4𝜋𝜖0ℏ𝑐
 .        (3.2) 
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Therefore, Eq. (3.2) predicts that the size of a Hydrogen-like atom with atomic 
number Z should be approximately 1/αZ times the electron’s reduced Compton 
wavelength. For the Hydrogen atom Z = 1, thus 1/αZ ≈ 137 times the electron’s 
reduced Compton wavelength, which confirms the initial slow-moving 
assumption. However, the size of a Hydrogen-like atom with atomic number Z = 
137 is approximately equal to the electron’s reduced Compton wavelength. 
Therefore, the electron moves at relativistic speeds if Z ≈ 137 because its kinetic 
energy approximately is: 
 

 𝐾ƛ ≈
ℏ2

2𝑚𝑒ƛ𝐶
2 =  

1

2
 𝑚𝑒𝑐2.              (3.3) 

 
This means that, if the atomic number Z >> 1, then the electron moves at 
relativistic speeds in the ground state of Hydrogen-like atoms. Therefore, to 
obtain a better estimate of the size of Hydrogen-like atoms, we should use Eq. 
(2.65) to modify Eq. (3.1) in the following way [4, 10]:  
 

 𝐸𝐺𝑃(𝑟) ≈
ℏ2

(𝛾+1)𝑚𝑒𝑟2 − 
𝑍𝑒2

4𝜋𝜖0𝑟
 , with 𝛾 = √1 + (

ƛ𝐶

𝑟
)

2
> 1.         (3.4) 

 
EGP(r) has a minimum when [4, 10]: 
 

 𝑟 = 𝑟𝑍 = 𝑎√1 − (
ƛ𝐶

𝑎
)

2
, with 𝑎 =

𝑟𝐵

𝑍
 .             (3.5) 

 
If Z << 1/α ≈ 137, then rZ ≈ a, which is the value previously obtained for a slow-
moving electron (Eq. (3.2)). However, when Z >> 1, the electron moves at 
relativistic speeds; this results in the square root factor in Eq. (3.5) becoming 
significant.  

 

 
 

Fig. 3.1. (Discontinuous) Non-relativistic and (continuous) relativistic 
estimates of the radius (in reduced Compton wavelength units) of the 

common quantum field of the electron with ET = E + mc2 in Hydrogen-like 
atoms [4, 10] 

 
As shown in Fig. 3.1, the relativistic correction to the size of the ground state of 
Hydrogen-like atoms becomes significant when a ≈ ƛC. Moreover, the size of the 
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Hydrogen-like atom becomes undefined when Z > 1/α ≈ 137. This could be 
interpreted as a prediction about the impossibility of the natural existence of 
elements with Z >137. This prediction matches the observed reality. No element 
with Z > 118 has ever been discovered.  
 
As shown in Fig. 3.1, the common quantum field associated with the electron 
collapses to a point when a ≈ ƛC. This suggests an interesting explanation for the 
finite number of elements in the Periodic Table of elements. Classical particles 
cannot form stable atoms. The observed stability of the atoms was one of the 
principal unexplained phenomena driving the development of Quantum 
Mechanics [4]. Classical particles cannot form stable atoms, but quantum 
particles can. It is the existence of a quantum field associated with a quantum 
particle that makes atoms stable. However, a relativistic electron moving in a 
Coulomb field lost the common wave associated with it when a ≈ ƛC. This 
explains the finite number of elements in the Periodic Table. Note that 
nonrelativistic quantum mechanics would predict the existence of very heavy 
elements in Mother Nature. The finite number of elements in the Periodic Table 
can only be explained by combining quantum mechanics and special relativity.  
 
It is worth noting that if a ≈ ƛC, then the absolute value of the electron’s potential 
energy can be estimated using Eq. (3.1): 
 

 |𝑈ƛ| ≈
𝑍𝑒2

4𝜋𝜖0ƛ
=  𝑚𝑒𝑐2.              (3.6) 

 

Consequently, neither the kinetic energy of the electron (Eq. (3.3)) nor the 
absolute value of its potential energy reaches ultra-relativistic values larger than 
2mc2. This justifies disregarding in our simple approach effects related with the 
creation of particle-antiparticle pairs. 
 

Finally, it should be noted that there are two waves associated with a relativistic 
quantum particle. We have discussed above about the size of the quantum field 
corresponding to the common quantum states of a relativistic quantum particle 
moving in a Coulomb potential. If the relativistic quantum particle were in an 
exotic state, then Eq. (3.4) should be substituted by the following equation: 
 

 𝐸𝐺𝑃
′ (𝑟) ≈ −

ℏ2

(𝛾+1)𝑚𝑒𝑟2
−  

𝑍𝑒2

4𝜋𝜖0𝑟
 .            (3.7) 

 

However, Eq. (3.7) does not have a local extremum because both the kinetic 
energy of the quantum particle in exotic states and its potential energy are 
negatives. This means there is no collapse of the quantum field associated with 
the exotic states. We conclude then that a relativistic quantum particle cannot 
exist in a situation where the particle cannot have two waves but only one wave 
associated with it.  
 

SECTION 3B. GRAVITY 
 

How to combine quantum mechanics and general relativity theories is an open 
field of intense research. One of the simplest approaches in this direction 
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consists in using the one-dimensional Schrödinger-Newton equation for a free 
quantum particle [11-12]: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) = −

ℏ2

2𝑚

𝜕2

𝜕𝑟2
 𝜓(𝑟, 𝑡) −  𝐺𝑚2 ∫

|𝜓(𝑟′,𝑡)|2

|𝑟′−𝑟|
𝑑𝑟′.         (3.8) 

 
In Eq. (3.8), G is the gravitational constant [4, 5, 10]. Eq. (3.8) combines 
nonrelativistic quantum mechanics and classical gravity theories. The motivation 
for using the Schrödinger-Newton equation is that the only property of the particle 
included in the Schrödinger equation is the mass. This has been interpreted by 
some physicists as suggesting that there is a quantum field (wavefunction) 
associated with any object with mass. For instance, there should even be a wave 
function associated with the whole Universe. Our everyday experiences strongly 
suggest that any extended classical bodies of mass m should gravitationally 
interact with themselves. Black holes exist due to the gravitational interaction 
between the different parts of their original and spatially distributed mass. The 
enormous pressure existing inside planets acquires the same origin. If we 
extrapolate this to the quantum world, then any quantum particle with mass 
should interact gravitationally with itself. If the quantum particle moves slowly and 
the gravitation attraction is not too strong, then combining the Schrödinger 
equation with Newtonian gravitation is justified. Solving Eq. (3.8) is 
mathematically complicated because Eq. (3.8) is a nonlinear equation [11]; 
however, if we are interested in obtaining an estimate of the size of the quantum 
field associated with a free quantum particle with mass in a common state, we 
could simplify the mathematical problem to solve by proposing the following 
modification of Eq. (3.1) [4, 10]: 
 

  𝐸𝑆𝑐ℎ(𝑟) ≈
ℏ2

2𝑚𝑟2
− 

𝐺𝑚2

𝑟
.             (3.9) 

 
In Eq. (3.9), the Newtonian gravitational attraction of the particle with itself 
substitutes the Coulomb interaction included in Eq. (3.1). Due to its null size, the 
gravitational term in Eq. (3.1) would have to be removed if the quantum particle 
could not interact with itself. In this case, the kinetic energy term of Eq. (3. 1) 
would not have a local minimum which results in an infinitely spatial extended 
plane wave as the wavefunction for a free particle with mass. In contrast, ESch(r) 
has a minimum when [4, 10]: 
 

 𝑟 = 𝑎𝐺 =
ℏ2

𝐺𝑚3 = 𝑙𝑃 (
𝑚𝑃

𝑚
)

3
, with 𝑙𝑃 = √

ħ𝐺

𝑐3 , and 𝑚𝑃 = √
ħ𝑐

𝐺
 .       (3.10) 

 
In Eq. (3.10), lP and mP are the Planck’s length and mass, respectively.  
 
At relativistic speeds, the Schrödinger-Newton equation (Eq. (3.8)) should be 
substituted by the GP-Newton equation: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) = −

ℏ2

2𝜇

𝜕2

𝜕𝑟2  𝜓(𝑟, 𝑡) −  𝐺𝑚2 ∫
|𝜓(𝑟′,𝑡)|2

|𝑟′−𝑟|
𝑑𝑟′.      (3.11) 
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Fig. 3.2. (Discontinuous) Non-relativistic and (continuous) relativistic 
estimates of the radius (in Planck length units) of the common quantum 

field with ET = E + mc2 for a particle that interacts gravitationally with itself 
[4, 10] 

 
And Eq (3.9) should be substituted by the following equation [4, 10]: 
 

 𝐸𝐺𝑃(𝑟) ≈
ℏ2

(𝛾+1)𝑚𝑟2 − 
𝐺𝑚2

𝑟
 , with 𝛾 = √1 + (

ƛ𝐶

𝑟
)

2
 .        (3.12) 

 
 EGP(r) has a minimum when [4, 10]: 
 

 𝑟 = 𝑟𝑚 = 𝑎𝐺  √1 −  (
𝜆𝐶

𝑎𝐺
)

2
= 𝑙𝑃 (

𝑚𝑃

𝑚
)

3
√1 − (

𝑚

𝑚𝑃
)

4
 .       (3.13) 

 
As shown in Fig. 3.2, a notable consequence of combining quantum mechanics, 
the special theory of relativity, and Newtonian gravity is the existence of a critical 
mass mc = mP above which the size of the particle becomes undefined. This 
critical mass could be interpreted as the frontier between the quantum and the 
classical matter world [4, 10]. This is because the quantum field, associated with 
a relativistic quantum particle with mass m in a common state, collapses to a 
point when m = mP. When this happens the quantum particle is transformed into 
a classical particle. It should be noted that the Planck mass value (mP ≈ 22 μg) is 
quite small for having to consider the full complexity of quantum mechanics in 
daily life. In contrast, it is quite large when compared to molecular masses, and 
the quantum experiments that have been accomplished to date. Interestingly, 
biological cells, including human neurons, could still be quantum objects. In any 
event, the experimental confirmation or rejection of this hypothesis would have 
fundamental consequences for quantum mechanics and cosmology. In particular, 
the confirmation of the existence of mc could mean that there is not a universal 
wavefunction, that the Schrödinger quantum cat cannot exist because his mass 
is much larger than mP [4, 6] and that the macroscopic world that surrounds us is 
as classical as it seems to be for the same reason. Nevertheless, it is important 
to realize that huge classical bodies can be formed by numerous quantum 
particles.  
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Notably, if m ≈ mP, then the quantum particle moves at relativistic speeds, but its 
kinetic energy does not reach ultra-relativistic values larger than 2mc2. This is 
because if m ≈ mP, then r ≈ lP. Therefore, we could estimate K using Eq. (3.9):  
 

𝐾𝑙𝑃
≈

ℏ2

2𝑚𝑃𝑙𝑃
2 =  

1

2
 𝑚𝑐2.        (3.14) 

 
This value is equal to Eq. (3.3) because the reduced Compton wavelength of a 
particle with mass m = mP is equal to the Planck length: 
 

ƛ𝐶 =
ℏ

𝑚𝑃𝑐
=  √

ħ𝐺

𝑐3 =  𝑙𝑃 .                      (3.15) 

 
In addition, if m ≈ mP, the absolute value of the gravitational potential energy of a 
particle with mass m = mP does not reach ultra-relativistic values larger than 
2mc2: 
 

|𝑈𝑙𝑃
| ≈

𝐺𝑚2

𝑙𝑃
=  𝑚𝑐2 .        (3.16) 

 
Therefore, disregarding effects related to the creation of particle-antiparticle pairs 
in our simple approach is well justified. 
 
Finally, it should be noted that there are two waves associated with a relativistic 
quantum particle. We have discussed above about the size of the quantum field 
corresponding to the common quantum states of a relativistic quantum particle 
that gravitationally interacts with itself. If the relativistic quantum particle were in 
an exotic state, then Eq. (3.12) should be substituted by the following equation: 
 

 𝐸𝐺𝑃
′ (𝑟) ≈ −

ℏ2

(𝛾+1)𝑚𝑟2 −  
𝐺𝑚2

𝑟
 .                        (3.17) 

 
However, Eq. (3.17) does not have a local extremum because both the kinetic 
energy of the quantum particle in exotic states and its potential energy are 
negatives. This means there is no collapse of the exotic quantum field associated 
with a relativistic quantum particle for any mass value. Nevertheless, the collapse 
of one of the two quantum fields associated with a relativistic quantum particle 
with mass is enough for the inexistence of the relativistic quantum particle in a 
situation where the particle can only have a wave associated to it.  
 
SECTION 3C. THE PLANCK CHARGE 
 
It should be clear that the discussions presented in Sections 3.a and 3.b are also 
valid for antiparticles. This means that like Hydrogen-like atoms, anti-Hydrogen-
like atoms could not be too heavy (Section 3.a). This also means that antimatter 
bodies with a mass larger than the Planck mass should be classical objects. In 
Sections 3.a and 3.b we explored two cases where attractive interaction exists. 
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Fig. 3.3. Relativistic estimate of the radius (in Planck length units) of the 
exotic quantum field for an antiparticle with ETa = Eꞌa - mc2 that interacts 

electrostatically with itself [4] 
 
For a change, let us now start by referring to antiparticles and exotic antiparticle 
states. We will focus now on describing the hypothetical repulsive Coulombic 
interaction of an electrically charged antiparticle with itself. If the antiparticle is in 
an exotic state and has charge q, then Eq. (3.7) should be substituted by [4, 13]: 
 

 𝐸𝐺𝑃𝑎
′ (𝑟) ≈ −

ℏ2

(𝛾+1)𝑚𝑟2 + 
𝑞2

4𝜋𝜖0𝑟
 , with 𝛾 = √1 + (

ƛ𝐶

𝑟
)

2
 .        (3.18) 

 
EꞌGPa(r) has a maximum when [4, 13]: 
 

 𝑟 = 𝑟𝑞 = ƛ𝐶ξ−2√1 − ξ4 , with ξ =
𝑞

𝑞𝑃
 , 𝑞𝑃 = √4𝜋𝜖0ℏ𝑐 .                     (3.19) 

 
Therefore, ƛC/ξ-2 → ƛC (the reduced Compton wavelength), when |q| → qP ≈ 11e 
(the Planck charge). Moreover, r → 0, when |q| → qP. Therefore, as shown in Fig. 
3.3, a notable consequence of combining quantum mechanics, special theory of 
relativity, and repulsive Coulombic self-interactions is the existence of a critical 
charge, |qc| = qP. Above this charge’s absolute value, the size of the antiparticle 
becomes undefined because the exotic quantum field collapses to a point. This 
critical charge could be interpreted as the frontier between the quantum and the 
classical antimatter world [4, 13]. 
 
There should be two waves associated with a relativistic quantum antiparticle. 
We have discussed above about the size of the quantum field corresponding to 
the exotic quantum states of a relativistic quantum antiparticle that electrically 
interacts with itself. If the antiparticle were in a common state, then Eq. (3.18) 
should be substituted by the following equation: 
 

𝐸𝐺𝑃𝑎(𝑟) ≈
ℏ2

(𝛾+1)𝑚𝑟2 + 
𝑞2

4𝜋𝜖0𝑟
 , with 𝛾 = √1 +  (

ƛ𝐶

𝑟
)

2
 .        (3.20) 
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However, Eq. (3.20) does not have a local extremum because both the kinetic 
energy of the antiparticle in common states and its potential energy are positive. 
This means there is no collapse of the quantum field associated with the 
common states of the antiparticle for any value of its charge q. Nevertheless, the 
collapse of one of the two quantum fields associated with a relativistic quantum 
antiparticle is enough for the inexistence of the antiparticle in a situation where 
the antiparticle can only have a wave associated with it. This means that 
quantum antiparticles with the modulus of its electric charge (|q|) larger than the 
Plank charge should not exist. In fact, no quantum antiparticle with |q| > qP has 
ever been observed. 
 
Notably, if |q| ≈ qP, then the quantum antiparticle moves at relativistic speeds, but 
neither the kinetic energy of the antiparticle nor the absolute value of its potential 
energy (U) reaches ultra-relativistic values larger than 2mc2. This is because if |q| 
≈ qP, then r ≈ ƛC. Therefore, we could estimate the absolute value of |Kꞌ| and U in 
the following way:  
 

|𝐾ƛ𝐶

′ | ≈
ℏ2

2𝑚ƛ𝐶
2 =  

1

2
 𝑚𝑐2 , and 𝑈ƛ ≈

𝑞2

4𝜋𝜖0ƛ
=  𝑚𝑐2 .        (3.21) 

 
Therefore again, disregarding the effects related to the creation of particle-
antiparticle pairs in our simple approach is well justified. 
___________________________________________________________________________________ 
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At this point, we can focus our attention on the evident asymmetry between 
matter and antimatter that exists in the world surrounding us. As stated in Section 
3.3, particles and antiparticles are formed in pairs, so therefore, the number of 
particles in the Universe should be equal to the number of antiparticles [1-4]. The 
fact that we seem to live in a Universe where there are many more particles than 
antiparticles is an unsolved mystery [3]. In addition, no one knows why we live in 
a world formed almost exclusively by atoms and molecules made of matter. No 
antimatter life seems to exist in the Universe. Most physicists believe that the 
reason for this huge discrepancy between theory and reality is related to some 
type of unknown asymmetric event that occurred at the beginning of the Universe 
[3]. But nobody knows for sure why and how the observed asymmetry occurs.  
 

It should be emphasized that everything discussed until this point in this 
monograph is strictly particle-antiparticle symmetric. Thus, coincides in this 
aspect with the big picture coming from the standard model of particle physics 
[1]. However, the interaction of a fundamental particle with itself is not included in 
the standard model of particle physics. This gives us the theoretical opportunity 
to propose a way of breaking the theoretical matter-antimatter symmetry by 
adequately extending the standard model of particle physics. This extension 
should simultaneously break the theoretical matter-antimatter symmetry and 
include the interaction of a quantum particle with itself.  
 

SECTION 4A. SHORTAGE OF ANTIMATTER ELEMENTS  
 

By hypothesizing that a quantum particle could interact electrostatically with 
itself, we could find a simple explanation for the observed shortage of antimatter 
elements (Z < 2-3) when compared with the relatively larger number of elements 
in the Periodic table (Z < 120). We should add that the symmetry breakdown 
requires that a quantum particle interacts with itself, but in a different manner 
than the corresponding antiparticle does. In Section 3, it was proposed that the 
antiparticle self-repulsive Coulombic interaction results in the validity of Eqs. 
(3.20) and (3.18). This corresponds to the validity of the following nonlinear 
relativistic wave equations, respectively [13]: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓𝑎(𝑟, 𝑡) = −

ℏ2

2𝜇𝑎

𝜕2

𝜕𝑟2  𝜓𝑎(𝑟, 𝑡) + 
𝑞2

4𝜋𝜖0
∫

|𝜓𝑎(𝑟′,𝑡)|2

|𝑟′−𝑟|
𝑑𝑟′.         (4.1) 

 

and 
 

𝑖ℏ
𝜕

𝜕𝑡
𝛺𝑎(𝑟, 𝑡) = −

ℏ2

2𝜇𝑎
′

𝜕2

𝜕𝑟2  𝛺𝑎(𝑟, 𝑡) + 
𝑞2

4𝜋𝜖0
∫

|𝛺𝑎(𝑟′,𝑡)|2

|𝑟′−𝑟|
𝑑𝑟′.              (4.2) 
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If the charged antiparticle is in a common state, Eq. (4.1) is valid. If the charged 
antiparticle is in an exotic state, Eq. (4.2) is valid. In contrast, the matter-
antimatter symmetry can be broken by proposing, first, that the corresponding 
particle with charge – q electrostatically interacts with itself and, second, that the 
following wave equations are valid for the particle [13]: 
 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) = −

ℏ2

2𝜇

𝜕2

𝜕𝑟2  𝜓(𝑟, 𝑡) +  
𝑞2

4𝜋𝜖0
∫

|𝜓(𝑟′,𝑡)|2

|𝑟′−𝑟|
𝑑𝑟′.                      (4.3) 

 
and 
 

𝑖ℏ
𝜕

𝜕𝑡
𝛺(𝑟, 𝑡) = −

ℏ2

2𝜇′

𝜕2

𝜕𝑟2
 𝛺(𝑟, 𝑡) − 

𝑞2

4𝜋𝜖0
∫

|𝛺(𝑟′,𝑡)|2

|𝑟′−𝑟|
𝑑𝑟′ .        (4.4) 

 
If the charged particle is in a common state, Eq. (4.3) is valid. If the charged 
particle is in an exotic state, Eq. (4.4) is valid. Note that the matter-antimatter 
symmetry is broken because Eqs. (4.2) and (4.4), the wave equations for the 
exotic states, are not equal. Solving the wave equations (Eqs. (4.1) to (4.4)) may 
present notable mathematical difficulties due to their nonlinear character.  
However, as shown in Section 3.c., we could have a crude estimate of the 
physical reality corresponding to them by solving Eqs. (3.18), (3.20) and the 
following equation: 
 

      𝐸𝐺𝑃
′ (𝑟) ≈ −

ℏ2

(𝛾+1)𝑚𝑟2 − 
𝑞2

4𝜋𝜖0𝑟
 ,    con  𝛾 = √1 + (

ƛ𝐶

𝑟
)

2
 .                       (4.5) 

 
In contrast with the equation corresponding to the exotic state of the antiparticle 
(Eq. (3.18), the equation corresponding to the exotic state of the particle (Eq. 
(4.5) does not have a local minimum. For this reason, the hypothesized 
Coulombic self-interaction breaks the particle-antiparticle symmetry. Note that if 
the relativistic quantum particle is in a common state, then Eq. (3.20) should also 
be valid for the relativistic quantum particle. 
 
Consequently, only the exotic quantum field associated with the antiparticle could 
collapse to a point due to the Coulombic interaction of the antiparticle with itself. 
This is a theoretical proposal that is outside of the standard model of particle 
physics. This is because it supposes the interaction of every relativistic quantum 
particle and antiparticle with itself. This proposal does not affect the standard 
model of particle physics in its scope of applications but extends the range of 
applications of relativistic quantum mechanics. Moreover, as will be shown 
below, this theoretical proposal is strongly validated by the compelling match 
between its predictions and the physical reality surrounding us.  
 
First, we could easily explain the observed shortage of antimatter chemical 
elements when compared with the relative abundance of chemical elements in 
the Periodic table. The stability of atoms is a consequence of quantum 
mechanics. In nonrelativistic quantum mechanics, it is the existence of a wave 
associated with a quantum particle that makes atoms stable. In relativistic 
quantum mechanics, there are two waves associated with a relativistic quantum 



 
 
 

Where the Biological Antimatter is? 
Braking the Particle-antiparticle Symmetry 

 
 

 

 
32 

 

particle. Atoms and antiatoms are stable if and only if there are two waves 
associated with the electron and positron cloud surrounding the nucleus, 
respectively.  
   
A stable Hydrogen-like atom requires a relativistic quantum electron attracted by 
the nucleus. Two waves should be associated with the electron. However, as 
discussed in Section 3.a, if Z > 137, the common wave associated with the 
electron collapses to a point. This theoretical prediction matches the no existence 
of atoms with Z > 137. This is also valid for anti-Hydrogen-like antiatoms formed 
by an antiproton and a positron. This is because Eqs. (3.4) and (3.7) are equally 
valid for Hydrogen-like atoms and anti-Hydrogen-like antiatoms. 
 
In contrast, there is an additional theoretical limitation only for antiatoms. A stable 
antiatom requires a relativistic quantum cloud of positrons attracted by the 
nucleus. Two waves should be associated with the cloud of positrons. However, 
as discussed in Section 3.c, if Ze > qP ≈ 11e, the exotic wave associated to the 
cloud of positrons collapses to a point. This theoretical prediction matches the no 
existence of antiatoms with Z > 11. This constitutes an additional and stronger 
limitation to the atomic number of possible antiatoms. However, due to Eq. (4.5), 
the exotic wave associated with a cloud of electrons never collapses to a point. 
Consequently, there are matter atoms with 11 < Z < 137. This explains the 
observed shortage of antimatter elements when compared with the relatively 
larger number of elements in the Periodic Table [4, 13]. 
 
SECTION 4B. BIOLOGICAL ANTIMATTER CAN NOT EXIST 
 
The prediction about the impossibility of the existence of atoms with Z > 137 is a 
correct but approximated prediction. No atom with Z > 118 has ever been 
observed. Similarly, the prediction about the impossibility of the existence of 
antiatoms with Z > 11 is a correct but approximated prediction. No antiatom with 
Z > 2-3 has ever been observed. We can then argue that Carbon antiatoms with 
Z = 6 do not exist because if Z = 6 the quantum field associated with the exotic 
state of a cloud of 6 positrons collapses to near a point. The impossibility of the 
existence of Carbon antiatoms explains the reality surrounding us. We are 
surrounded by biological matter, but biological antimatter has never been 
observed [4,13].  
 
SECTION 4C. PRIMORDIAL BLACK HOLES AND ANTIMATTER 
ELECTRICAL SINKS 
 
Previously, we have argued that there is no wave associated with a classical 
particle but there are two waves associated with a relativistic quantum article. If 
one of the waves collapses to a point, then the quantum particle transforms into a 
classical particle. Classical particles cannot form stable atoms.   
 
There is another hypothetical situation where the collapse of the quantum field to 
a point could be relevant [4, 13]. It has been hypothesized the possible existence 
of primordial black holes with a relatively small mass. Primordial black holes may 
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have been created around 13 billion years ago, at the beginning of our universe. 
Mass fluctuations with m > mP could have produced their formation [12]. As 
discussed above, these hypothetical mass fluctuations may have formed 
primordial relativistic quantum objects. If their masses were larger than Planck’s 
mass, then the collapse to points of their common quantum fields (Fig. 3.2) may 
have created primordial black holes. At present, there is no observational 
evidence of the existence of primordial black holes. Nevertheless, the possible 
existence of these small mass black holes is a research topic of great interest. 
 
Similarly, primordial antimatter electric sinks may have been created around 13 
billion years ago, at the beginning of our universe [4, 13]. Antimatter charge 
fluctuations with |q| > qP could have produced their formation. As discussed 
above, these hypothetical antimatter charge fluctuations may have formed 
primordial relativistic quantum objects. If their charges were larger than Planck’s 
charge, then the collapse to points of their exotic quantum fields (Fig. 3.3) may 
have created primordial antimatter electric sinks. This may explain the existence 
of an excess of charged matter in the rest of the universe [4, 13].   
___________________________________________________________________________________ 
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CONCLUSION 
 
In this work, it was argued that current relativistic quantum mechanics should be 
expanded by including the interaction of each quantum particle and antiparticle 
with itself. This work discusses how we could explain the everyday experience of 
the absence of biological antimatter in our world.  It is shown that this could be 
achieved by maintaining the validity of relativistic quantum mechanics, but 
adopting the idea that both an electrically charged particle with mass and the 
corresponding antiparticle could interact electrically with itself. 
 
For simplicity, the discussions were based on the solutions of the Grave de 
Peralta equation for the infinity well. This is the simplest model for a spatially 
localized relativistic quantum particle with mass. As discussed in Chapter 2, the 
Grave de Peralta equation is a relativistic but Schrödinger-like equation. 
Therefore, it can be solved like the Schrödinger equation is solved. The well-
known solution of the Schrödinger equation for a quantum particle with mass, 
which is confined in an infinite one-dimensional well, was presented in Chapter 1. 
The corresponding problem for the relativistic Grave de Peralta equation was 
solved in Chapter 2.   
 
A semiquantitative discussion of the consequences of adding the interaction of 
the quantum particle with itself was presented in Chapter 3. This includes the 
determination of the size of Hydrogen-like atoms, the possible existence of a 
frontier between the quantum and the classical world, and the impossibility of the 
existence of quantum antiparticles with the absolute value of the electrical charge 
larger than the Plank charge. Finally, in Chapter 4, the matter-antimatter 
symmetry was theoretically broken by postulating that a particle electrically 
interacts with itself in a different way than the corresponding antiparticle interacts 
with itself. It was then presented a surprising explanation of this everyday 
experience: we are surrounded by living beings made of matter, but no living 
beings made of antimatter have ever been observed. 
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